202 research outputs found

    Multiscale Shear Properties and Flow Performance of Milled Woody Biomass

    Get PDF
    One dominant challenge facing the development of biorefineries is achieving consistent system throughput with highly variant biomass feedstock quality and handling performance. Current handling unit operations are adapted from other sectors (primarily agriculture), where some simplifying assumptions about granular mechanics and flow performance do not translate well to a highly compressible and anisotropic material with nonlinear time- and stress-dependent properties. This work explores the shear and frictional properties of loblolly pine at multiple experimental test apparatus and particle scales to elucidate a property window that defines the shear behavior over a range of material attributes (particle size, size distribution, moisture content, etc.). In general, it was observed that the bulk internal friction and apparent cohesion depend strongly on both the stress state of the sample in granular shear testers and the overall particle size and distribution span. For equipment designed to characterize the quasi-static shear stress failure of bulk materials ranging from 50 to 1,000 ml in test volume, similar test results were observed for finely milled particles (50% passing size of 1.4 mm) with a narrow size distribution (span between 10 and 90% passing size of 0.9 mm), while stress chaining and over-torque issues persisted for the bench-scale test apparatus for larger particle sizes or widely dispersed sample sizes. Measurement of the anisotropic particle–particle friction ranged from coefficients of approximately 0.20 to 0.45 and resulted in significantly higher and more variable friction measurements for larger particle sizes and in perpendicular alignment orientations. To supplement these laboratory-scale properties, this work explores the flow of loblolly pine and Douglas fir through a pilot-scale wedge-shaped hopper and a screw feeder. For the gravity-driven hopper flow, the critical arching distance and mass discharge rate ranged from approximately 10 to 30 mm and 2 to 16 tons/hour, respectively, for both materials, where the arching distance depends strongly on the overall particle size and depends less on the hopper inclination angle. Comparatively, the auger feeder was found to be much more impacted by the size of the particles, where smaller particles had a more consistent and stable flow while consuming less power

    Alternative biofuels:PVTx measurements for DME + propane

    Get PDF
    This study presents the experimental results for the dimethyl ether (DME) ? propane system obtained using the Burnett method. The apparatus was calibrated using helium. PVTx measurements were taken for four isotherms (344, 354, 364, and 375 K), performing 16 Burnett expansions in pressures ranging from about 3,000 to 70 kPa. The second and third virial coefficients were derived from experimental results. The experimental uncertainty in the second and third virial coefficients was estimated to be within ±5 cm 3/mol and ±1,000 cm6/mol2,respectively

    The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis

    Full text link
    [EN] In this work, the influence of the pore structure of 10-ring zeolites used as the methanol dehydration func-tion in CuZnAl(CZA)/zeolite hybrid catalysts was studied for the direct dimethyl ether (DME) synthesis. Tothis purpose, six different 10-ring H-zeolites (ZSM-5, FER, IM-5, TNU-9, MCM-22, ITQ-2) with alike bulkSi/Al ratios (in the 9 14 range) were employed. Additionally, the effect of crystallite size (for ZSM-5) andselective surface dealumination by treatment with oxalic acid (for MCM-22) was also investigated. Whilethe initial activity of the zeolites for methanol dehydration was driven by the concentration of strongBrønsted acid sites, the extent of decay was dictated by the pore structure, which determined the amountand nature of the formed carbon species. When evaluated for direct DME synthesis under methanolsynthesis-controlled conditions, all CZA/zeolite hybrid catalysts (prepared by grinding, CZA:zeolite massratio of 2:1) experienced a decline of CO conversion (and DME yield) with time-on-stream (TOS) due toa gradual loss of the methanol synthesis activity of the Cu-based component. Interestingly, the stabilitywith TOS was the lowest for the hybrid catalysts comprising zeolites with large external surface areas(Sext) such as ITQ-2 and MCM-22. Moreover, for zeolites with similar Sext, the deactivation extent of thehybrid catalysts increased with the concentration of surface Al species (from XPS) in the zeolite. Thus,the delaminated ITQ-2 zeolite (Si/Alsurf= 10.6, Sext= 324 m2/g) produced the less stable hybrid while thatcomprising zeolite TNU-9 (Si/Alsurf= 17.9, Sext= 12 m2/g) displayed the highest stability during the syngas-to-DME experiments. These results suggest that the deterioration of the methanol synthesis activity ofthe CZA catalyst in the hybrid catalysts prepared by grinding is produced by detrimental interactionsbetween zeolitic Al species and Cu sites at the surface-contact between zeolite and CZA particleFinancial support by the Comision Interministerial de Ciencia y Tecnologia (CICYT) of Spain through the Project CTQ2010-17988/PPQ is gratefully acknowledged. A. Garcia-Trenco thanks the Ministerio de Economia y Competitividad (former Ministerio de Ciencia e Innovacion) of Spain for a predoctoral (FPI) scholarship.García Trenco, A.; Valencia Valencia, S.; Martinez Feliu, A. (2013). The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Applied Catalysis A General. 468:102-111. doi:10.1016/j.apcata.2013.08.038S10211146

    Potential Routes for Thermochemical Biorefineries

    Get PDF
    This critical review focuses on potential routes for the multi-production of chemicals and fuels in the framework of thermochemical biorefineries. The up-to-date research and development in this field has been limited to BTL/G (biomass-to-liquids/gases) studies, where biomass-derived synthesis gas (syngas) is converted into a single product with/without the co-production of electricity and heat. Simultaneously, the interest on biorefineries is growing but mostly refers to the biochemical processing of biomass. However, thermochemical biorefineries (multi-product plants using thermo-chemical processing of biomass) are still the subject of few studies. This scarcity of studies could be attributed to the limitations of current designs of BTL/G for multi-production and the limited number of considered routes for syngas conversion. The use of a platform chemical (an intermediate) brings new opportunities to the design of process concepts, since unlike BTL/G processes they are not restricted to the conversion of syngas in a single-reaction system. Most of the routes presented here are based on old-fashioned and new routes for the processing of coal- and natural-gas-derived syngas, but they have been re-thought for the use of biomass and the multi-production plants (thermochemical biorefinery). The considered platform chemicals are methanol, DME, and ethanol, which are the common products from syngas in BTL/G studies. Important keys are given for the integration of reviewed routes into the design of thermochemical biorefineries, in particular for the selection of the mix of co-products, as well as for the sustainability (co-feeding, CO2 capture, and negative emissions).Ministerio de Educación FPU Program (AP2010-0119)Ministerio de Economía y Competitividad ENE2012-3159

    PVT properties of an alternative biofuel: dimethyl ether

    Get PDF
    Dimethyl ether is an important chemical material and it has many engineering applications. It is a clean and economical alternative fuel and an ozone-friendly refrigerant. In this work, its PVT properties have been object of study. In particular, the experimental work was performed both in the two-phase region and in the superheated vapor region phase by means of the isochoric method. The isochoric measurements were carried out at temperatures from 219 K to 363 K and at pressures from 22 kPa up to 1,740 kPa. A total of 159 points, both in the two phase (71 points) and in the superheated vapor region (88 points) were obtained. The present experimental PVT data contribute to the deeper knowledge of the behaviour of the fluid both in the superheated vapour and in the saturation pressure region and to the development of a new equation of state

    Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling

    Get PDF
    This work focuses on thermodynamic analysis of the autothermal reforming of palm empty fruit bunch (PEFB) bio-oil for the production of hydrogen and syngas. PEFB bio-oil composition was simulated using bio-oil surrogates generated from a mixture of acetic acid, phenol, levoglucosan, palmitic acid and furfural. A sensitivity analysis revealed that the hydrogen and syngas yields were not sensitive to actual bio-oil composition, but were determined by a good match of molar elemental composition between real bio-oil and surrogate mixture. The maximum hydrogen yield obtained under constant reaction enthalpy and pressure was about 12 wt% at S/C = 1 and increased to about 18 wt% at S/C = 4; both yields occurring at equivalence ratio Φ of 0.31. The possibility of generating syngas with varying H2 and CO content using autothermal reforming was analysed and application of this process to fuel cells and Fischer-Tropsch synthesis is discussed. Using a novel simple modelling methodology, reaction mechanisms were proposed which were able to account for equilibrium product distribution. It was evident that different combinations of reactions could be used to obtain the same equilibrium product concentrations. One proposed reaction mechanism, referred to as the ‘partial oxidation based mechanism’ involved the partial oxidation reaction of the bio-oil to produce hydrogen, with the extent of steam reforming and water gas shift reactions varying depending on the amount of oxygen used. Another proposed mechanism, referred to as the ‘complete oxidation based mechanism’ was represented by thermal decomposition of about 30% of bio-oil and hydrogen production obtained by decomposition, steam reforming, water gas shift and carbon gasification reactions. The importance of these mechanisms in assisting in the eventual choice of catalyst to be used in a real ATR of PEFB bio-oil process was discussed

    Recent advances in catalytic hydrogenation of carbon dioxide

    Full text link
    corecore