1,004 research outputs found

    Vertical eddy diffusion coefficient from the LANDSAT imagery

    Get PDF
    Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models

    A study of atmospheric diffusion from the LANDSAT imagery

    Get PDF
    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models

    Molecular Dynamics Simulations to Probe Effects of Ultra-Short, Very-High Voltage Pulses on Cells

    Get PDF
    The use of very high electric fields (∼ 100kV/cm or higher) with pulse durations in the nanosecond range (Ultra-short) has been a very recent development in bioelectrics. Traditionally, the electric field effects have mostly been confined to: (a) low field, long-duration pulses, and (b) focused mainly on electroporation studies. Thus, aspects such as possible field-induced DNA damage, calcium release, alterations in neuro-transmitters, or voltage-gating have generally been overlooked. Ultra-short, high-field pulses open the way to targeted and deliberate apoptotic cell killing (e.g., of tumor cells). Though experimental data is very useful, it usually yields information on macroscopic variables that is inherently an average over time and/or space. Measurements often do not provide the molecular level information or details, as might be possible through numerical simulations. Also, the relevance and relative role of underlying physical mechanisms cannot be probed. With developments in computer technology, rapid advances in numerical algorithms for parallel computing, and with increasing computational resources, computer simulations of cellular dynamics and biological phenomena is gaining increasing popularity. A range of simulation methods exist that span the macroscopic continuum approaches (e.g. the Smoluchowski equation), to those based on the semi-classical retarded Langevin and Green\u27s functions, to microscopic-kinetic analyses based on Brownian dynamics or Molecular Dynamics (MD). Here we focus on the MD technique, as it provides the most comprehensive, time-dependent, three-dimensional nanoscale analyses with inclusion of the many-body aspects. This dissertation research presents simulations and analyses of lipid membrane poration and its dynamics, predictions of transport parameters under high-field, non-equilibrium conditions, electric fields effects on DNA, micelle disintegration, protein unfolding and intra-cellular calcium release. The following results have been found as a result of the application of external electric fields on cells: (a) Poration due to the re-orientation of the lipid molecules within the lipid bilayer, (b) Externalization of charged molecules such as Phosphotidyl Serine (PS), (c) Dramatic lowering of permittivity and diffusion coefficient with spatially structured layering of the membrane nanopore, (d) DNA alignment in the direction of electric field and eventual fragmentation, (e) Calcium release from the endoplasmic reticulum (ER) leading to time-dependent oscillatory waves and (f) Membrane fragmentation upon the application of high external fields

    A petri net approach to the modelling and analysis of flexible manufacturing systems

    Get PDF
    In this paper we present an approach for modelling and analyzing flexible manufacturing systems (FMSs) using Petri nets. In this approach, we first build a Petri net model (PNM) of the given FMS in a bottom-up fashion and then analyze important qualitative aspects of FMS behaviour such as existence/absence of deadlocks and buffer overflows. The basis for our approach is a theorem we state and prove for computing the invariants of the union of a finite number of Petri nets when the invariants of the individual nets are known. We illustrate our approach using two typical manufacturing systems: an automated transfer line and a simple FMS

    Restoration Data Storage in Multi-cloud Storage Services

    Get PDF
    Multi-Cloud Storage infers the utilization of various appropriated stockpiling organizations using a singular web interface rather than the defaults given by the circulated stockpiling shippers in a single heterogeneous plan. This Multi-Cloud accumulating model empowers customers to store cut mixed data in various cloud drives. Right now, offers assistance for various appropriated stockpiling organizations using the single interface as opposed to using single circulated stockpiling organizations. Cloud security objective basically focuses on issues that relate to information insurance and security parts of dispersed processing. Likewise, the data in clients' information can be spilled e.g., by methods for malignant insiders, indirect accesses, pay off and pressure. This latest data accumulating organization and data control model focus on vindictive insider's passageway on set aside data, affirmation from malignant archives, removal of united dissemination of data storing and clearing of out of date records or downloaded records once in a while. Data owner doesn't generally need to worry over the destiny of the data set aside in the Multi-Cloud server may be removed or ruined. The other is entrance control of data. The exploratory results exhibit that the suggested show is suitable for essential authority process for the data owners in the better choice of multi-disseminated capacity advantage for sharing their information securely

    Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses

    Get PDF
    AbstractThe dynamical translocation of lipids from one leaflet to another due to membrane permeabilization driven by nanosecond, high-intensity (>100kV/cm) electrical pulses has been probed. Our simulations show that lipid molecules can translocate by diffusion through water-filled nanopores which form following high voltage application. Our focus is on multiple pulsing, and such simulations are relevant to gauge the time duration over which nanopores might remain open, and facilitate continued lipid translocations and membrane transport. Our results are indicative of a N½ scaling with pulse number for the pore radius. These results bode well for the use of pulse trains in biomedical applications, not only due to cumulative behaviors and in reducing electric intensities and pulsing hardware, but also due to the possibility of long-lived thermo-electric physics near the membrane, and the possibility for pore coalescence

    EcoSupply: a machine learning framework for analyzing the impact of ecosystem on global supply chain dynamics

    Get PDF
    A global supply chain spans several regions and countries across the globe. A tremendous spurt in the extent of globalization has necessitated the need for modeling global supply chains in place of the conventional supply chains. In this paper, we propose a framework, EcoSupply, to analyze the supply chain ecosystem in a probabilistic setting unlike the existing methodologies, which presume a deterministic context. EcoSupply keeps track of the previous observations in order to facilitate improved prediction about the influence of uncertainties in the ecosystem, and provides a coherent mathematical exposition to construe the new associations, among the different supply chain stakeholders, in place of the existing links. To the best of our knowledge, EcoSupply is the first machine learning based paradigm to incorporate the dynamics of global supply chains
    corecore