143 research outputs found

    Автономия Π²ΠΎΠ»ΠΈ ΠΊΠ°ΠΊ особый институт ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ частного ΠΏΡ€Π°Π²Π°

    Get PDF
    Π ΡΡˆΠ΅Π½Ρ†Π΅Π²Π° К. Π’. Автономия Π²ΠΎΠ»ΠΈ ΠΊΠ°ΠΊ особый институт ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ частного ΠΏΡ€Π°Π²Π° / К. Π’. Π ΡΡˆΠ΅Π½Ρ†Π΅Π²Π° // ΠœΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½Ρ– читання присвячСні пам’яті профСсора Π†ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΡΡŒΠΊΠΎΠ³ΠΎ ΠΠΎΠ²ΠΎΡ€ΠΎΡΡ–ΠΉΡΡŒΠΊΠΎΠ³ΠΎ унівСрситСту П. Π„. Казанського: ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ ΠœΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΡ— ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†Ρ–Ρ— (ΠΌ. ОдСса, 22-23 Товтня 2010 Ρ€ΠΎΠΊΡƒ). – ОдСса : ЀСнікс, 2010.- Π‘. 339-341.Автор ΡΡ‚Π°Ρ‚ΡŒΠΈ Π΄Π΅Π»Π°Π΅Ρ‚ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠΈΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° Ρ€Π΅ΡˆΠ°Ρ‚ΡŒΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡƒΡ‚Ρ‘ΠΌ обоснования признания Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠΈΠΈ Π²ΠΎΠ»ΠΈ ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²ΠΎΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ² ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ частного ΠΏΡ€Π°Π²Π°, Π½ΠΎ ΠΈ ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ· диспозитивности ΠΊΠΎΠ»Π»ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Π½ΠΎΡ€ΠΌΡ‹

    РСнийсодСрТащиС ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Ρ‹ Π² Π½Π΅Ρ„Ρ‚Π΅Ρ…ΠΈΠΌΠΈΠΈ ΠΈ органичСских рСакциях

    Get PDF
    We have made an overview of the studies of rhenium-containing catalysts for the industrial petroleum chemical processes in their historical development: the reforming of hydrocarbons, gasoline fractions, disproportion of olefines – metathesise, and the possibility of future application of rheniumcontaining catalysts in organic reactions.РассмотрСно историчСскоС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ исслСдований каталитичСских свойств нанСсСнных рСнийсодСрТащих ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ² для ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½Ρ‹Ρ… процСссов Π½Π΅Ρ„Ρ‚Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ Π½Π΅Ρ„Ρ‚Π΅Ρ…ΠΈΠΌΠΈΠΈ: Ρ€ΠΈΡ„ΠΎΡ€ΠΌΠΈΠ½Π³Π° ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ², Π±Π΅Π½Π·ΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΠΈ диспропорционирования ΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² – ΠΌΠ΅Ρ‚Π°Ρ‚Π΅Π·ΠΈΠ·Π° ΠΈ пСрспСктивы дальнСйшСго примСнСния рСнийсодСрТащих ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ², Π² Ρ‚ΠΎΠΌ числС Π² органичСских рСакциях

    Potential Routes for Thermochemical Biorefineries

    Get PDF
    This critical review focuses on potential routes for the multi-production of chemicals and fuels in the framework of thermochemical biorefineries. The up-to-date research and development in this field has been limited to BTL/G (biomass-to-liquids/gases) studies, where biomass-derived synthesis gas (syngas) is converted into a single product with/without the co-production of electricity and heat. Simultaneously, the interest on biorefineries is growing but mostly refers to the biochemical processing of biomass. However, thermochemical biorefineries (multi-product plants using thermo-chemical processing of biomass) are still the subject of few studies. This scarcity of studies could be attributed to the limitations of current designs of BTL/G for multi-production and the limited number of considered routes for syngas conversion. The use of a platform chemical (an intermediate) brings new opportunities to the design of process concepts, since unlike BTL/G processes they are not restricted to the conversion of syngas in a single-reaction system. Most of the routes presented here are based on old-fashioned and new routes for the processing of coal- and natural-gas-derived syngas, but they have been re-thought for the use of biomass and the multi-production plants (thermochemical biorefinery). The considered platform chemicals are methanol, DME, and ethanol, which are the common products from syngas in BTL/G studies. Important keys are given for the integration of reviewed routes into the design of thermochemical biorefineries, in particular for the selection of the mix of co-products, as well as for the sustainability (co-feeding, CO2 capture, and negative emissions).Ministerio de EducaciΓ³n FPU Program (AP2010-0119)Ministerio de EconomΓ­a y Competitividad ENE2012-3159
    • …
    corecore