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ABSTRACT 

Dimethyl ether is an important chemical material and it has many engineering applications. It is a 

clean and economical alternative fuel and an ozone-friendly refrigerant. 

In this work, its PVT properties have been object of study. In particular, the experimental work was 

performed both in the two-phase region and in the superheated vapor region phase by means of the 

isochoric method. The isochoric measurements were carried out at temperatures from 219 K to 363 

K and at pressures from 22 kPa up to 1740 kPa. A total of 159 points, both in the two phase (71 

points) and in the superheated vapor region (88 points) were obtained. The present experimental 

PVT data contribute to the deeper knowledge of the behaviour of the fluid both in the superheated 

vapour and in the saturation pressure region and to the development of a new equation of state.  

Keywords: Biofuel, Dimethyl Ether, PVT, Thermophysical properties. 

 

Introduction 

Dimethyl Ether (DME - CH3OCH3) is the simplest ether. It is a clean and ecological fluid which can 

be produced from various resources as natural gas, coal or biomass through synthesis gas. Its 

physical and thermophysical properties, compared to the ones of methane, propane, butane, and 

methanol, are reported in Table 1. From the present table it is evident that its properties are very 

similar to those of liquefied petroleum gases (i.e., butane or propane). For this reason it can be 

distributed and stored using the LPG handling technology. It can be used for various fields such as 

alternative fuel [1] and natural refrigerant (RE 170) [2]. 

In the case of burning DME, there are no emissions of SOx or particulate and the emissions of NOx 

and CO2 are extremely small. In addition, its GWP is of 0.3 per 100 years [3]. For all these reasons, 

its thermophysical properties were recently studied [4] and a fundamental equation of state was also 

derived [5]. In this work, vapor pressures and PVT measurements are presented. Vapor pressures 



were compared with existing literature sources. 

 

Experimental section 

Reagents. DME was supplied by Aldrich Inc., USA., and its purity was checked by gas 

chromatographic analysis, using a thermal conductivity detector. It was found to be 99.8 % on an 

area-response basis. 

Experimental devices. In this paper, the adopted device is the same described elsewhere [6,7] with 

no modifications. Here, only a brief description is reported. The constant-volume apparatus with a 

volume of 273.5 cm3 was used for the two-phase measurements.  

An AISI 304 stainless steel spherical cell containing the refrigerant sample is connected to a 

differential diaphragm pressure transducer coupled to an electronic null indicator. The transducer 

and sphere were placed vertically, and a magnetic pump for mixing the sample was connected to the 

sphere. A second spherical cell was also connected and used for volume calibration. Because of the 

complex volume of the isochoric cell, its total volume (including the piping, the pressure transducer 

cavity, and magnetic pump volumes) was calibrated according to the classic Burnett calibration 

procedure, adopting helium as the reference fluid. 

The spherical cells and pressure transducer are immersed in two thermostatic baths containing 

different silicon oils and alternatively used for measurements at different temperature ranges. Both 

baths are controlled by a Proportional Integrative Derivative (PID) device. An auxiliary bath, also 

controlled by a PID device, helps the system to keep the temperature constant. A platinum 

resistance thermometer is immersed near the cell and is connected to a digital indicator.  

Mixtures were prepared using the gravimetric method. The sample was first placed in different 

bottles, degassed to remove noncondensable gases and air, and weighed with an analytical balance. 

After evacuating the cell, the bottles were discharged into the cell immersed in the bath. At the end 

of this procedure, the bottles were weighed, and the mass of the charge was calculated from the 

difference between the two weights. The lost mass inside the duct was estimated and subtracted 

from the total mass of the charge. 

Experimental uncertainties. The uncertainty in the temperature measurements is due to the 

thermometer and any instability of the bath. The stability of the bath was found to be less than 

±0.015 K and the uncertainty of the thermometer was found to be less than ±0.010 K in our 

temperature range. The total uncertainty in the temperature measurements was thus less than ±0.03 

K. Any uncertainty in the pressure measurements is due to the transducer and null indicator system, 

and to the pressure gauge. The digital pressure indicator (Ruska, mod. 7000) has an uncertainty of 



±0.003% of the full scale. The total uncertainty in the pressure measurement, also influenced by 

temperature fluctuations due to bath instability, was found to be less than ±1 kPa.  

To check the experimental repeatability, some measurements were repeated under the same 

experimental conditions. The obtained data were always found to be in agreement with the 

experimental ones and well within the experimental uncertainty. 

 

Results and Discussions 

In total, 159 experimental points for dimethyl ether were obtained. By the isochoric method, 71 data 

points were collected in the two-phase region and reported elsewhere [8], while 88 data were 

collected along 6 isochores in the superheated vapor region. The experimental points taken within 

the VLE boundary were fitted with a Wagner type equation. The experimental VLE data were 

compared with recently-published data and a generally good consistency between the different 

sources was found. The vapor phase data are reported in Table 2. A summary of the experimental 

measurements is showed in Figure 1.  

Vapor pressure data. The 71 vapor pressure points were obtained at temperatures from (219 to 361) 

K and for pressures from (22 to 2622) kPa. Experimental data were fit to the four-parameter 

Wagner equation, 
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where τ=(Tc-T)/Tc; the critical temperature Tc=400.1 K [9]. The following values were found for the 

parameters: A1 = -7.40714, A2 = 3.42409, A3 = -2.97850, A4 = -3.43070, reproducing data with dP = 

0.16 % and abs(dP) = 0.26 %. In the fitting procedure, the critical pressure was fixed to be 

Pc=5370.2 kPa [9].  The analysis of the recent literature showed that a total of 11 data sources are 

available [10-20]. The experimental results were also compared with the published data in the 

literature. In figure 2 are reported absolute and relative deviations for the literature data from 

equation 1. Most of the deviations are well within ±10 KPa, showing a general consistency between 

the sources; a systematic shift of 5 KPa was found only for one source [20], while higher deviations 

were found at temperatures greater than 320 K for two sources [14,15]. 

PVT data. The isochoric PVT measurements were taken in a temperature range from (219 to 361) 

K, at pressures from (22 to 2622) kPa, and for molar volumes from (1.45 to 4.66) dm3⋅mol-1. The 

experimental P-V-T measurements were compared with the predicted values from the Martin Hou 

equation of state in its original expression [21]. 
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Using eq 2 with the experimental temperature and volume data, the deviations from the 

experimental pressure were calculated for each data point. Due to unknown accurate value of TBoyle 

needed in the original version of the Martin-Hou EoS, we estimated its value to be 1000 ±100 K 

(i.e., for many real gases TBoyle is approximately 2.5 Tc). Consequent deviations spanned from AAD 

(P)= 2.48 % to AAD (P)= 2.81 %. Since no experimental data were available in the open literature, 

our experimental results were also compared with REFPROP 8.0 [9]. Absolute and relative 

deviation between experimental data and REFPROP 8.0 prediction are reported in figure 3. 

Deviations showed an AAD (P)= 1.2 %. The data compared both with the Martin Hou EoS and 

REFPROP 8.0 showed similar deviation trends. The main source of error could be probably due to 

the small amount of mass charged. 

 

Conclusions 

In this work, the PVT properties of dimethyl ether have been measured, both in the saturation region 

and in the superheated vapor region. The results in the two phase region were correlated, together 

with a selection of literature sources, with the Wagner equation. The isochoric PVT data were 

compared with the Martin-Hou equation of state and REFPROP 8.0 predictions. A generally good 

agreement with the literature sources was found for the measured saturated pressures, however, a 

systematic deviation is observed between experimental superheated vapor region data and both 

predictive models.  
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Table 1. Comparison of physical and thermophysical properties of DME and similar fuels. 

 
Fuel DME Methane Propane Butane Methanol 

Chemical formula CH3OCH3 CH4 C3H8 C4H10 CH3OH 

Boiling point (°C) -25.1 -161.5 -42.0 -0.5 64.6 

Liquid density (g/cm3, @20 °C) 0.67 - 0.49 0.57 0.79 

Molecular mass (g/mol) 44.068 16.043 44.096 58.122 32.042 

Triple point (°C) -141.5 -182.46 -187.62 -138.26 -97.54 

Critical temperature (°C) 127.15 -82.586 96.74 151.98 239.45 

Critical pressure (atm) 52.71 45.39 41.96 37.46 79.98 

Specific gravity of gas (vs air) 1.59 0.55 1.52 2.0 - 

Saturated vapor pressure (atm, @25°C) 6.1 - 9.3 2.4 0.17 

Ignition point (°C) 235 650 470 430 450 

Explosion limit (%) 3.4-1.7 5-15 2.1-9.4 1.9-8.4 5.5-36 



Cetane number 55-60 0 5 10 5 

Net calorific value (kcal/kg) 6.9 12 11.1 10.93 4.8 

 

Table 2. Experimental P-V-T Data for DME 

 

T/K P/kPa V/dm3⋅mol-1 T/K P/kPa V/dm3⋅mol-1 

m = 2.91 g   m = 6.14 g   

298.08 535.4 4.332 321.05 1077.8 2.055 

301.26 542.9 4.333 325.04 1109.6 2.056 

308.03 558.4 4.334 329.03 1129.9 2.056 

313.13 568.8 4.335 333.03 1150.4 2.056 

318.12 578.2 4.336 337.00 1167.9 2.057 

323.01 587.9 4.337 340.99 1186.8 2.057 

328.09 597.5 4.338 344.98 1205.4 2.058 

332.99 607.1 4.339 348.97 1223.8 2.058 

338.16 617.0 4.340 352.96 1242.0 2.058 

342.96 626.2 4.341 356.45 1260.1 2.059 

348.13 636.1 4.342 360.97 1278.6 2.059 

352.92 645.0 4.343 362.98 1287.7 2.059 

357.81 654.3 4.344    

   m = 7.52 g   

m = 3.39 g   329.05 1316.9 1.679 

297.08 583.60 3.719 331.04 1329.4 1.679 

299.08 593.66 3.719 333.03 1347.1 1.679 

301.08 599.95 3.720 335.03 1360.2 1.679 

303.07 605.94 3.720 337.03 1373.2 1.679 

309.06 622.32 3.721 339.02 1385.9 1.680 

310.93 627.89 3.721 341.01 1398.2 1.680 

313.05 632.84 3.721 343.01 1410.4 1.680 

317.06 643.06 3.722 345.00 1422.5 1.680 

321.02 653.13 3.723 347.02 1434.8 1.680 

325.07 663.44 3.723 348.99 1446.7 1.680 

329.03 673.15 3.724 351.01 1459.1 1.680 

333.08 683.23 3.725 353.00 1470.9 1.681 

337.03 693.07 3.725 355.00 1482.8 1.681 

341.06 702.99 3.726 356.99 1494.2 1.681 

345.05 712.79 3.727 359.00 1506.0 1.681 

349.02 722.77 3.727 361.03 1517.9 1.681 

353.02 732.47 3.728 363.01 1529.6 1.681 

357.01 742.16 3.729    



362.93 756.45 3.730 m = 8.97 g   

   337.00  1552.4 1.408 

m = 4.78 g   338.98  1563.7 1.408 

308.27 777.4 2.639 340.98  1580.5 1.408 

313.15 810.5 2.639 342.98  1595.7 1.408 

318.05 828.5 2.640 344.98  1610.7 1.408 

323.01 846.5 2.640 346.96  1625.2 1.409 

328.17 865.1 2.641 348.96  1639.8 1.409 

333.18 883.0 2.642 350.95  1654.3 1.409 

337.95 900.0 2.642 352.95  1668.8 1.409 

343.26 918.7 2.643 354.94  1683.1 1.409 

348.21 936.0 2.643 356.93  1697.2 1.409 

353.08 952.9 2.644 358.93  1715.5 1.409 

357.99 969.8 2.644 360.91  1730.3 1.409 

362.36 984.9 2.645 362.94  1743.6 1.410 

 

Figure 1. Summary of the experimental PVT data. Black symbol data were reported in Rif. 7. 
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Figure 2. Vapor pressure absolute (left) and relative (right) deviations of DME from eq. 1 and 

measurements published in the literature (as reported in Rif. 7).  
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Figure 3. Scatter diagram of absolute (left) and relative (right) pressure deviations from REFPROP 

8.0 and present measurements:  
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