637 research outputs found

    Functional brain networks before the onset of psychosis : a prospective fMRI study with graph theoretical analysis

    Get PDF
    Individuals with an at-risk mental state (ARMS) have a risk of developing a psychotic disorder significantly greater than the general population. However, it is not currently possible to predict which ARMS individuals will develop psychosis from clinical assessment alone. Comparison of ARMS subjects who do, and do not, develop psychosis can reveal which factors are critical for the onset of illness. In the present study, 37 patients with an ARMS were followed clinically at least 24 months subsequent to initial referral. Functional MRI data were collected at the beginning of the follow-up period during performance of an executive task known to recruit frontal lobe networks and to be impaired in psychosis. Graph theoretical analysis was used to compare the organization of a functional brain network in ARMS patients who developed a psychotic disorder following the scan (ARMS-T) to those who did not become ill during the same follow-up period (ARMS-NT) and aged-matched controls. The global properties of each group's representative network were studied (density, efficiency, global average path length) as well as regionally-specific contributions of network nodes to the organization of the system (degree, farness-centrality, betweenness-centrality). We focused our analysis on the dorsal anterior cingulate cortex (ACC), a region known to support executive function that is structurally and functionally impaired in ARMS patients. In the absence of between-group differences in global network organization, we report a significant reduction in the topological centrality of the ACC in the ARMS-T group relative to both ARMS-NT and controls. These results provide evidence that abnormalities in the functional organization of the brain predate the onset of psychosis, and suggest that loss of ACC topological centrality is a potential biomarker for transition to psychosis

    Copy number deletion burden is associated with cognitive, structural, and resting-state network differences in patients with schizophrenia

    Get PDF
    Total burden of copy number deletions has been implicated in schizophrenia risk and has been associated with reduced cognitive functioning. The current study aims to replicate the cognitive findings and investigate regional grey and white matter volumes. Moreover, it will explore resting-state networks for correlations between functional connectivity and total deletion burden. All imaging differences will be investigated for correlations with cognitive differences. Seventy-eight patients with chronic schizophrenia, who formed a subset of a large genome-wide association study (GWAS), were assessed for intelligence, 34 had structural magnetic resonance imaging, 33 had resting-state functional magnetic resonance imaging, and 32 had diffusion tensor imaging (DTI). Total deletion burden was negatively associated with IQ performance and positively associated with regional volumes in the striatum bilaterally and in the right superior temporal gyrus and white-matter in the corpus callosum. Correlations were identified between deletion burden and both hyper and hypoconnectivity within the default-mode network and hypoconnectivity within the cognitive control network. The functional connectivity correlations with deletion burden were also correlated with the IQ differences identified. Total deletion burden affects regional volumes and resting-state functional connectivity in key brain networks in patients with schizophrenia. Moreover, effects of deletions on cognitive functioning in may be due to inefficiency of key brain networks as identified by dysconnectivity in resting-state networks

    Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    Get PDF
    [EN] Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital¿cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH.Funding for this study was provided by Spanish grants from Ministry of Science and Innovation (ISCIII: FIS P.I.02/0018, P.I.05/2332.), Spanish Mental Health Network: CIBERSAM and Combiomed Network.De La Iglesia-Vaya, M.; Escartí Fabra, MJ.; Molina-Mateo, J.; Marti-Bonmati, L.; Gadea, M.; Castellanos, FX.; Aguilar Garcia-Iturrospe, EJ.... (2014). Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations. NeuroImage Clinical. 6:171-179. https://doi.org/10.1016/j.nicl.2014.08.027S171179

    PRKCA Polymorphism Changes the Neural Basis of Episodic Remembering in Healthy Individuals

    Get PDF
    Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials (ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural performance did not differ between groups. Results replicated in a second independent sample of participants. These findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening a new route towards understanding individual differences in memory

    Comprehensive review:Computational modelling of Schizophrenia

    Get PDF
    Computational modelling has been used to address: (1) the variety of symptoms observed in schizophrenia using abstract models of behavior (e.g. Bayesian models - top-down descriptive models of psychopathology); (2) the causes of these symptoms using biologically realistic models involving abnormal neuromodulation and/or receptor imbalance (e.g. connectionist and neural networks - bottom-up realistic models of neural processes). These different levels of analysis have been used to answer different questions (i.e. understanding behavioral vs. neurobiological anomalies) about the nature of the disorder. As such, these computational studies have mostly supported diverging hypotheses of schizophrenia's pathophysiology, resulting in a literature that is not always expanding coherently. Some of these hypotheses are however ripe for revision using novel empirical evidence.Here we present a review that first synthesizes the literature of computational modelling for schizophrenia and psychotic symptoms into categories supporting the dopamine, glutamate, GABA, dysconnection and Bayesian inference hypotheses respectively. Secondly, we compare model predictions against the accumulated empirical evidence and finally we identify specific hypotheses that have been left relatively under-investigated

    Neurexin-1 and Frontal Lobe White Matter: An Overlapping Intermediate Phenotype for Schizophrenia and Autism Spectrum Disorders

    Get PDF
    Background: Structural variation in the neurexin-1 (NRXN1) gene increases risk for both autism spectrum disorders (ASD) and schizophrenia. However, the manner in which NRXN1 gene variation may be related to brain morphology to confer risk for ASD or schizophrenia is unknown. Method/Principal Findings: 53 healthy individuals between 18–59 years of age were genotyped at 11 single nucleotide polymorphisms of the NRXN1 gene. All subjects received structural MRI scans, which were processed to determine cortical gray and white matter lobar volumes, and volumes of striatal and thalamic structures. Each subject’s sensorimotor function was also assessed. The general linear model was used to calculate the influence of genetic variation on neural and cognitive phenotypes. Finally, in silico analysis was conducted to assess potential functional relevance of any polymorphisms associated with brain measures. A polymorphism located in the 39 untranslated region of NRXN1 significantly influenced white matter volumes in whole brain and frontal lobes after correcting for total brain volume, age and multiple comparisons. Follow-up in silico analysis revealed that this SNP is a putative microRNA binding site that may be of functional significance in regulating NRXN1 expression. This variant also influenced sensorimotor performance, a neurocognitive function impaired in both ASD and schizophrenia. Conclusions: Our findings demonstrate that the NRXN1 gene, a vulnerability gene for SCZ and ASD, influences brai

    Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy

    Get PDF
    Disrupted striatal functional connectivity is proposed to play a critical role in the development of psychotic symptoms. Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies typically reported disrupted striatal connectivity in patients with psychosis and in individuals at clinical and genetic high risk of the disorder relative to healthy controls. This has not been widely studied in healthy individuals with subclinical psychotic-like experiences (schizotypy). Here we applied the emerging technology of multi-echo rs-fMRI to examine corticostriatal connectivity in this group, which is thought to drastically maximize physiological noise removal and increase BOLD contrast-to-noise ratio. Multi-echo rs-fMRI data (echo times, 12, 28, 44, 60 ms) were acquired from healthy individuals with low (LS, n = 20) and high (HS, n = 19) positive schizotypy as determined with the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE). After preprocessing to ensure optimal contrast and removal of non-BOLD signal components, whole-brain functional connectivity from six striatal seeds was compared between the HS and LS groups. Effects were considered significant at clusterlevel p < .05 family-wise error correction. Compared to LS, HS subjects showed lower rs-fMRI connectivity between ventromedial prefrontal regions and ventral striatal regions. Lower connectivity was also observed between the dorsal putamen and the hippocampus, occipital regions, as well as the cerebellum. These results demonstrate that subclinical positive psychotic-like experiences in healthy individuals are associated with striatal hypoconnectivity as detected using multi-echo rs-fMRI. Further application of this approach may aid in characterizing functional connectivity abnormalities across the extended psychosis phenotype.Brain & Behavior Research Foundation NARSAD Young Investigator Gran

    Widespread white matter microstructural differences in schizophrenia across 4322 individuals:Results from the ENIGMA Schizophrenia DTI Working Group

    Get PDF
    The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.Molecular Psychiatry advance online publication, 17 October 2017; doi:10.1038/mp.2017.170
    corecore