1,506 research outputs found

    The losses of gold during cupellation using various makes of cupels

    Get PDF
    There are on the market various cupels. Many of the assay-supply firms sell a manufactured cupel, presumably made of bone-ash. The great majority of all cupels used, are made of bone-ash in the assay office itself. The object of this work is to compare the losses of gold when the various patented, the various manufactured and the ordinary hand made cupels are used --page 1

    Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI

    Get PDF
    Tourette syndrome (TS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics. Individuals with TS would benefit greatly from advances in prediction of symptom timecourse and treatment effectiveness. As a first step, we applied a multivariate method - support vector machine (SVM) classification - to test whether patterns in brain network activity, measured with resting state functional connectivity (RSFC) MRI, could predict diagnostic group membership for individuals. RSFC data from 42 children with TS (8-15 yrs) and 42 unaffected controls (age, IQ, in-scanner movement matched) were included. While univariate tests identified no significant group differences, SVM classified group membership with ~70% accuracy (p < .001). We also report a novel adaptation of SVM binary classification that, in addition to an overall accuracy rate for the SVM, provides a confidence measure for the accurate classification of each individual. Our results support the contention that multivariate methods can better capture the complexity of some brain disorders, and hold promise for predicting prognosis and treatment outcome for individuals with TS

    Detection of pediatric upper extremity motor activity and deficits with accelerometry

    Get PDF
    Importance: Affordable, quantitative methods to screen children for developmental delays are needed. Motor milestones can be an indicator of developmental delay and may be used to track developmental progress. Accelerometry offers a way to gather real-world information about pediatric motor behavior. Objective: To develop a referent cohort of pediatric accelerometry from bilateral upper extremities (UEs) and determine whether movement can accurately distinguish those with and without motor deficits. Design, Setting, and Participants: Children aged 0 to 17 years participated in a prospective cohort from December 8, 2014, to December 29, 2017. Children were recruited from Ranken Jordan Pediatric Bridge Hospital, Maryland Heights, Missouri, and Washington University School of Medicine in St Louis, St Louis, Missouri. Typically developing children were included as a referent cohort if they had no history of motor or neurological deficit; consecutive sampling and matching ensured equal representation of sex and age. Children with diagnosed asymmetric motor deficits were included in the motor impaired cohort. Exposures: Bilateral UE motor activity was measured using wrist-worn accelerometers for a total of 100 hours in 25-hour increments. Main Outcomes and Measures: To characterize bilateral UE motor activity in a referent cohort for the purpose of detecting irregularities in the future, total activity and the use ratio between UEs were used to describe typically developing children. Asymmetric impairment was classified using the mono-arm use index (MAUI) and bilateral-arm use index (BAUI) to quantify the acceleration of unilateral movements. Results: A total of 216 children enrolled, and 185 children were included in analysis. Of these, 156 were typically developing, with mean (SD) age 9.1 (5.1) years and 81 boys (52.0%). There were 29 children in the motor impaired cohort, with mean (SD) age 7.4 (4.4) years and 16 boys (55.2%). The combined MAUI and BAUI (mean [SD], 0.86 [0.005] and use ratio (mean [SD], 0.90 [0.008]) had similar F1 values. The area under the curve was also similar between the combined MAUI and BAUI (mean [SD], 0.98 [0.004]) and the use ratio (mean [SD], 0.98 [0.004]). Conclusions and Relevance: Bilateral UE movement as measured with accelerometry may provide a meaningful metric of real-world motor behavior across childhood. Screening in early childhood remains a challenge; MAUI may provide an effective method for clinicians to measure and visualize real-world motor behavior in children at risk for asymmetrical deficits

    Intra-individual variability adaptively increases following inhibition training during middle childhood

    Get PDF
    There is ongoing debate on the relationship between intra-individual variability (IIV) of cognitive processes and task performance. While psychological research has traditionally assumed that lower intra-individual variability (IIV) aids consistent task performance, some studies suggest that greater IIV can also be adaptive, especially when flexible responding is required. Here we selectively manipulate inhibitory control (Stopping) and response speed (Going) by means of a training paradigm to 1) assess how this manipulation impacts Stopping IIV and its relationship to task performance, and 2) replicate previous findings showing that reductions in Going IIV are adaptive. A group of 208 6-13-year-old children were randomly allocated to an 8-week training targeting Stopping (experimental group) or Going (control group). The stop signal task was administered before and after training. Training Stopping led to adaptive increases in Stopping IIV, where greater flexibility in cognitive processing may be required to meet higher task demands. In line with previous studies, training Going led to adaptive reductions in Going IIV, which allows more consistent and efficient Going performance. These findings provide systematic and causal evidence of the process-dependent relationship of IIV and task performance in the context of Stopping and Going, suggesting a more nuanced perspective on IIV with implications for developmental, ageing and intervention studies

    Real-time motion analytics during brain MRI improve data quality and reduce costs

    Get PDF
    Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50% or more in our pediatric patient cohorts. Hence, many scanner operators collect additional 'buffer data', an expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant. Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM) software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan each subject until the desired amount of low-movement data has been collected. Our analyses show that using FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs by 50% or more

    The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability

    Get PDF
    The network organization of the human brain varies across individuals, changes with development and aging, and differs in disease. Discovering the major dimensions along which this variability is displayed remains a central goal of both neuroscience and clinical medicine. Such efforts can be usefully framed within the context of the brain\u27s modular network organization, which can be assessed quantitatively using computational techniques and extended for the purposes of multi-scale analysis, dimensionality reduction, and biomarker generation. Although the concept of modularity and its utility in describing brain network organization is clear, principled methods for comparing multi-scale communities across individuals and time are surprisingly lacking. Here, we present a method that uses multi-layer networks to simultaneously discover the modular structure of many subjects at once. This method builds upon the well-known multi-layer modularity maximization technique, and provides a viable and principled tool for studying differences in network communities across individuals and within individuals across time. We test this method on two datasets and identify consistent patterns of inter-subject community variability, demonstrating that this variability - which would be undetectable using past approaches - is associated with measures of cognitive performance. In general, the multi-layer, multi-subject framework proposed here represents an advance over current approaches by straighforwardly mapping community assignments across subjects and holds promise for future investigations of inter-subject community variation in clinical populations or as a result of task constraints

    Highly Enantioselective Catalytic Asymmetric Synthesis of a (R)-Sibutramin Precursor

    Get PDF
    The first highly enantioselective, catalytic asymmetric synthesis of di-des-methylsibutramine 3 is described. Dienamide 10, prepared by acetic acid anhydride quenching of the condensation product of nitrile 4 with a methallyl magnesium chloride, proved to be an excellent substrate for ruthenium-catalyzed asymmetric hydrogenation with atropisomeric diphosphine ligands. Hydrogenation with a ruthenium/(R)- MeOBiPheP catalyst at S/C = 500, gave the chiral amide (R)-9 in 98.5% ee in almost quantitative yield. After acidic amide hydrolysis the desired amine (R)-3 was obtained without erosion of enantioselectivity. It is anticipated that the overall process will be amenable to large-scale production
    corecore