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ABSTRACT 

Neurocognitive models and recent advances in brain imaging allow for a better 

understanding of the neural underpinnings of auditory verbal hallucinations (AVH). The 

challenge now for researchers is to use what we have learnt about the neural correlates 

of AVH and apply these findings as the basis for new and alternative therapeutic 

interventions. Here we will discuss influential neurocognitive models of AVH, the brain 

imaging findings that provide support for these models, and how these finding can be 

used to inform novel interventions using brain stimulation and neurofeedback protocols.  

 

KEYWORDS: Auditory Verbal Hallucinations (AVH), Auditory Cortex, Transcranial 

Magnetic Stimulation (TMS), Transcranial Direct Current Stimulation (tDCS), Real-Time 

Functional Magnetic Resonance Imaging Neurofeedback (rt-fMRI-NF) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

INTRODUCTION 

Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia, occurring 

in around 70% of patients with the illness (1) (2). They are associated with high levels of 

distress and functional disability (3) and approximately a quarter of patients with 

schizophrenia have made a serious suicide attempt in response to their AVH (4). In 

around 30% of patients with AVH, traditional antipsychotic drugs have little or no effect 

(5) meaning novel therapies are needed.  Cognitive behavioural therapy (CBT) for AVH 

has been shown to be effective in some cases (6, 7). However, a recent meta analysis 

reports that CBT for psychotic symptoms such as AVH has limited efficacy (8) and only 

short term benefits (7) and other psychological interventions such as Avatar Therapy 

(9), whilst offering an alternative approach, are still awaiting published randomized 

control trial data in patients with AVH.  

 

Over the last few decades a number of neurocognitive models have been proposed to 

account for generation and experience of AVH (10), and recent advances in brain 

imaging allow for a better understanding of the neural underpinnings of AVH (11, 12). 

The challenge now for cognitive neuroscientists is to use what we have learnt about the 

neural correlates of AVH over recent years and apply these findings as the basis for 

new and alternative therapeutic interventions. Here we will discuss this idea in some 

detail. Firstly, we will outline potentially useful neurocognitive models so that target brain 

regions and networks can be identified for therapeutic interventions. Second, we will 

discuss state-of-the-art technologies that might allow the application of this knowledge 

to new therapies, and the small number of studies that have utilized these technologies 

so far.  

 



SELF-MONITORING, PREDICTIVE CODING AND THE AUDITORY CORTEX 

Current cognitive models assume that AVH have clear perceptual qualities, are 

internally generated, but are somehow misrecognised or misattributed to an external 

source. At a neural level AVH appear to be associated with activity in a distributed 

network of brain regions (13) although the most robust and replicated finding appears to 

be elevated and/or aberrant cortical activity in auditory processing areas, particularly the 

speech-sensitive auditory cortex (14-16).  Evidence of increased resting activity (14) 

and resting cerebral perfusion in the auditory cortex (17) in patients with schizophrenia 

is consistent with neuroimaging studies employing a ‘symptom-capture design’ that 

report increased activation in auditory processing areas when patients are actively 

experiencing AVH (13).  Whilst elevated neural activity in the auditory cortex is likely to 

underpin the perceptual qualities of AVH, a number of other ‘non-sensory’ brain regions 

have also been implicated in AVH including the prefrontal and premotor cortex (PFC), 

medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC) and paracingulate 

sulcus (PCS), as well as subcortical and cerebellar regions (11, 18-20). Thus, AVH and 

their phenomenological characteristics are likely to emerge from a complex interaction 

of sensory/cognitive processes and associated neural regions.  From a neurocognitive 

perspective, a particularly difficult phenomenological feature of AVH to understand is 

the lack of agency that defines the experience (21). Inner-speech models of AVH 

propose that a loss or lack of agency, and the subsequent misattribution of inner-

speech, can come about due to a breakdown in a physiological process known as self-

monitoring (22). The self-monitoring model assumes that in patients who experience 

AVH, inner speech and/or thoughts are not recognized or ‘tagged’ as self-generated 

due to a self-monitoring deficit i.e. a dysfunction of the efference copy or corollary 

discharge mechanism that accompanies a motor action, such as speech or movement 

(42, 43). Under normal circumstances, an efference copy is generated by motor regions 

to signal to sensory regions that an action is volitional in nature. In people experiencing 

AVH, the efference copy produced by inner speech (a presumed motor action) is 



defective and does not effectively signal the generation of the accompanying motor 

action to the corresponding sensory regions. Consequently, this failure can produce 

confusion regarding the agency between one’s own actions/inner-speech and externally 

generated actions such as perceived voices and speech. At a neuronal level, the model 

would predict that AVH are associated with greater activity in the auditory cortex when 

self-generated inner speech is produced (43, 44) because the efference copy signal 

from speech motor regions fails to attenuate sensory activation in this region. This 

prediction is broadly consistent with findings from electrophysiological e.g. (23, 24) 

functional (25, 26) and perfusion neuroimaging studies (27) which reported increased 

neural activity in auditory sensory regions.  

 

A recent functional Magnetic Resonance Imaging (fMRI) study by Horga and colleagues 

(28), offers a slightly different theoretical perspective on the observed hyperactivity in 

auditory cortex seen in patients with schizophrenia and AVH. It is proposed that sensory 

hyperactivity may arise though sensory learning and predictive coding (PC) deficits in 

which the influence of prior beliefs on sensory input is disrupted. By encoding 

predictions (priors) and minimizing deviations from these predictions i.e. minimizing 

prediction errors (PE), neural systems can attenuate response to predictable (sensory) 

events (28). It is thought that predictive codes drive neural activity in sensory systems 

such as the auditory cortex (29, 30) and through their role in learning, influence how we 

form beliefs about sensory input (31).  

 

Horga and colleagues tested the idea that disruption in a system of prediction-based 

attenuation of sensory activity could explain the elevated cortical activity in auditory 

cortex reported by imaging studies in patients with AVH. Using a speech-decision task, 

during which participants’ expectations for hearing speech were manipulated, it was 

reported that patients with AVH displayed a deficit in a PE signaling in the same region 

of the auditory cortex activated when they were experiencing AVH. Patients with more 



severe AVH showed the greater PE deficits and greater activity in the auditory cortex 

activity during silence. According to Horga and colleagues, these results are consistent 

with defective PC accounts of schizophrenia and with accounts positing defective 

efference copy signaling, possibly conceived as a type of ‘long-range’ PC signal 

between motor and sensory regions. According to Frith’s model, efference copies of 

motor commands convey information about the sensory consequences of self-

generated action making them predictable.   Defective prediction mechanism, both 

within sensory regions and/or between motor and sensory regions, would result in a 

failure in the normal dampening of the auditory cortex response to self-generated 

speech (23, 28).  

 

It is worth noting however, that whilst at a behavioral level patients with schizophrenia 

and AVH exhibit difficulty in identifying self-generated information (10), models based 

on the misattribution of inner speech do not easily account for the observed 

phenomenology of AVH (48, 49) and it is only an assumption that the cancellation or 

suppression of re-afference (achieved via the efference copy mechanism) indicates the 

source of a sensory event i.e. a zero signal is not the same as self-generation (16).  On 

the other hand PC models, although compatible with efference copy models, would 

argue for a more general impairment in learning and signaling mechanisms in people 

with schizophrenia, regardless of whether sensory predictions originate from the motor 

system or within sensory systems (28). It is possible that in sensory systems, shifts 

towards prior knowledge may provoke anomalous perceptual experiences (32).  

 

Jardri and colleagues have attempted to refine the PC model further still (33).  Circular-

inference refers to the corruption of sensory data by prior information and vice versa. 

Recent experimental evidence shows that ascending loops are stronger in people with 

schizophrenia relative to healthy controls and correlate with the severity of positive 

symptoms like AVH (33). It is argued that both feed forward and feedback connections 



in the brain create strong excitatory loops where top-down influences of priors on 

sensory regions can easily be misinterpreted as new sensory evidence – making us see 

(or hear) what we expect. Under normal circumstances such predictable redundant 

excitatory input however is cancelled by inhibitory signals. Excitatory/inhibitory 

imbalances in people with schizophrenia are widely reported (34) and are likely to 

impair this process.  

 

To summarize, defective predictive signaling between motor and sensory regions, 

and/or within sensory regions could account for increased AC activity widely reported in 

patients with AVH, and, lead to this misrecognition of internally generated speech and 

thoughts as external or alien in origin. This raises issues around dysconnectivity within 

auditory sensory regions and between auditory and speech motor regions.  

 

REALITY MONITORING DEFICITS AND AVH 

In addition to aberrant activity in speech and language regions, deficits in other 

cognitive and neural mechanisms have been implicated in the experience of AVH, 

which are also broadly consistent with PC models.  A widely researched cognitive ability 

related to AVH is known as reality monitoring; the ability to discriminate between 

internally generated and externally perceived memories (35). Hallucinations are thought 

to result from some impairment in an individual’s ability to discriminate information 

perceived in the outside world from that which has been self-generated (22) so for 

example, as discussed earlier AVH might arise from a deficit in monitoring the self-

generation of inner speech (22, 36). In 1990, Richard Bentall explicitly linked this idea 

with the source monitoring framework to suggest a specific reality monitoring 

impairment underlying hallucination generation.  

 

The source monitoring framework (37) suggests that decisions are made about the 

inner or external nature of information by comparing it with characteristic traces of 



perceptual or cognitive content. This is complementary with, and indeed maps at a 

broad computational level of explanation to the PC account of reality discrimination in 

hallucinations. In the source monitoring explanation, the concept of priors is replaced by 

characteristic traces and the emphasis placed on the process by which a decision is 

made as to the internal or external nature of the information (38). Reality monitoring 

ability can be tested in the laboratory using a source memory paradigm in which 

participants recall whether stimuli were previously perceived or had been self-

generated, or whether they themselves had performed a task or it had been performed 

by someone else (39). Using such experimental designs, it has been found that patients 

with schizophrenia with hallucinations (usually AVH) show reality monitoring 

impairments compared with healthy individuals and patients without hallucinations (40). 

 

Neuroimaging studies investigating reality monitoring have typically observed activity in 

a number of brain regions associated with accurate recollection including lateral anterior 

PFC, dorsolateral PFC, insula/ventrolateral PFC, ACC and lateral parietal cortex (41). 

However, the brain region that appears to be particularly associated with differentiating 

between internally and externally generated information is the anterior mPFC (39, 42, 

43). This is consistent with previous findings indicating the involvement of anterior 

mPFC in the retrieval of self-referential information (44) and in other introspective or 

internally generated processes including day dreaming, evaluating personal attributes or 

attributing mental states to others (45, 46). Neuroimaging studies have revealed that 

patients with schizophrenia show dysfunction associated with reality monitoring 

impairment in the anterior mPFC (42, 47). Notably, the observed reduction in mPFC 

activity appears specifically related to reality monitoring performance, rather than an 

element of more general cognitive dysfunction (48). This suggests that reality 

monitoring might be a distinct neurocognitive deficit in schizophrenia. 

 

Consistent with this neuroimaging evidence, recent work has found that reality 



monitoring in healthy individuals is associated with the morphology of the PCS, a 

structure within the mPFC of the brain (49). The PCS lies adjacent to the ACC, a region 

that shows significant variation within the population (50), with the relative location and 

size of its functional regions dependent on local variations in sulcal and gyral anatomy 

(51). For some individuals there is an extra fold in the ACC, resulting in the tertiary PCS 

located dorsal and parallel to the more dominant cingulate sulcus (Figure 1). Among the 

last sulci to develop in utero, the PCS shows significant between subject variation, 

being completely absent in between 12% and 27% of the brain hemispheres examined 

from healthy individuals (52, 53), Variability is also seen in the PCS in patients with 

schizophrenia, with the sulcus absent in 44% of brain hemispheres examined for 

patients compared with healthy controls (53, 54).  

 

 

 

 

 

 

Figure 1. Paracingulate sulcus (PCS) morphology. Left: the PCS, marked in red, lies 
dorsal and parallel to the cingulate sulcus (CS). (a) the PCS is measured from its origin in 
the first quadrant to its end. (b) the PCS appears less distinct; it is measured from the point 
at which it runs in a posterior direction, dorsal to the cingulate sulcus. Right: the chart 
shows left hemisphere PCS length in patients with schizophrenia with and without 
hallucinations and healthy controls (55)  

 

In the experimental study by Buda and colleagues (49), it was found that healthy 

individuals with bilateral absence of the PCS were impaired at reality monitoring 

judgments, together with the metacognitive ability to introspect about their performance. 

More recently, in a sample of 113 patients with schizophrenia, we have shown that the 

length of the PCS is shorter in patients with hallucinations compared to those without 

(55). These results were not explained by differences in gyrification across the whole 



brain, nor by brain volume, and were validated using automated measurement of local 

gyrification index and voxel-based morphometry analysis. Moreover, there was no 

difference in PCS length related to the experience of hallucinations in different 

modalities, consistent with a generalized role for reality monitoring impairment in the 

formation of hallucinations, regardless of the sensory modality in which they occur. As 

such, this provides compelling evidence linking brain morphology to the experience of 

hallucinations in schizophrenia.  

 

Several factors support the role of paracingulate cortex in the generation of 

hallucinations. The PCS and surrounding anterior cingulate cortex are implicated in a 

range of functions consistent with reality monitoring, including understanding social 

interactions, integrating information streams, error detection and monitoring of cognitive 

processes (56, 57). Furthermore, the significant individual variation seen within the 

population is known to result in specific functional consequences (50, 58). More specific 

links to hallucinations come from measurements of metabolic activity within the ACC 

which are associated with the experience of auditory verbal hallucinations in 

schizophrenia (59, 60). For example, it is suggested that the experience of an AVH 

might be initiated with spontaneous random activity in speech sensitive auditory cortex 

within the superior temporal gyrus (STG) (11). Hunter and colleagues (61) have shown 

that such spontaneous activity in auditory cortex can be detected in healthy individuals 

during silence, and correlates with activity in the ACC, consistent with an associated 

process of reality monitoring. Finally, there are extensive connections between the 

cingulate region and brain areas which are known to be active during the experience of 

auditory verbal hallucinations (discussed below).  

 

To summarize, the mPFC, ACC and PCS appear to be important regions for 

discriminating between internally generated and externally perceived memories and 

events. There are extensive connections between the cingulate region and brain areas 



which are known to be active during the experience of AVH (i.e. sensory regions). 

Dysconectivity between these regions may results PC in deficits, source confusion and 

erroneous attribution regarding the origins of internally generated information.  Such 

connectivity studies are discussed in the next section.  

 

 

CONNECTIVITY AND AVH 

It has been established that AVH are associated with the activity in speech and 

language areas, regions that are involved in self-agency and monitoring, and memory 

processes (12).  Consequently, neurocognitive models of AVH (10, 11, 21, 22, 62) have 

long emphasised altered interactions and connectivity between neural regions involved 

in speech and language function e.g.(23, 24), and regions thought to be involved in the 

monitoring or ‘tagging’ of internally generated speech and thoughts (46, 63, 64). 

Consistent with these models, connectivity studies using different methodological 

approaches report altered structural, functional and effective connectivity in people with 

schizophrenia (65); several studies have specifically reported altered connectivity  in 

patients with AVH (12).  Functional connectivity (FC) is a widely used methodological 

approach, allowing the assessment of the temporal correlation between blood-

oxygenation-level dependent (BOLD) between two or more regions (66). In the context 

of the neurocognitive models already discussed, efference copy and/or PC deficits in 

people with schizophrenia would likely manifest in altered functional connectivity 

between sensory, motor and regions supporting higher level cognitive functioning such 

as reality monitoring (i.e mPFC/PCS). Broadly consistent with these neurocognitive 

models, altered functional and structural connectivity between auditory cortex and the 

inferior frontal gyrus, encompassing speech motor areas, has been widely reported (67-

71). For example Curcic-Blake (72), used an inner speech task to investigate 

connectivity difference in patients with schizophrenia with and without AVH and healthy 

individuals. They reported reduced connectivity from the posterior STG (Wernicke’s 



area) to the inferior frontal gyrus (Broca’s area) in patients with AVH. Dysconnectivity 

between these fronto-temporal language regions in patients with schizophrenia and 

AVH is also seen in electrophysiology studies reporting reduced coherence between 

these regions (23, 24).  Thus, reduced connectivity between speech motor and sensory 

regions may form the basis of defective efference copy signaling leading to, according 

the self-monitoring models, a failure to attenuate sensory activity and confusion 

regarding the source of inner-speech (22). Aberrant functional connectivity in temporal-

parietal sensory and language regions, and in primary and secondary auditory cortex in 

patients with AVH, is also reported (12).  These finding may be consistent to some 

degree with impaired PC signaling in sensory regions. In addition, evidence suggests 

that AVH are associated with increased connectivity in a cortico-striatal brain network, 

linking auditory sensory regions, inferior frontal gyrus and the putamen (68). This raises 

the possibility that altered striatal function in patients with schizophrenia is related to 

altered connectivity in language and sensory regions. Indeed, theoretical models of PC 

posit a central mechanistic role for dopaminergic signaling (30, 73) and patients with 

psychosis exhibit abnormal physiological responses associated with reward prediction 

error in the dopaminergic midbrain, striatum and limbic system (74).  

 

The involvement of the ACC and other cortical midline regions in reality and source 

monitoring has been discussed in the previous section. Several studies have 

investigated connectivity between fronto-temporal speech and language regions and 

cortical midline regions.  Mechelli and colleagues (75) investigate task based 

interactions between the frontal and temporal language areas and the ACC in patients 

with and without AVH and healthy controls. For healthy controls and patients without 

AVH, connectivity from the STG to ACC activity was greater for ‘other-person’ spoken 

words compared to self-spoken words; this finding was reversed in patients with AVH.   

A similar study using a source judgments task of externally presented self/other speech 

reported similar findings, showing that connectivity between the mPFC and the left STG 



was altered in patients with schizophrenia relative to healthy controls (76).  To date no 

studies have directly examined connectivity between the PCS and fronto-temporal 

language regions but consistent with dysconnectivity theories of schizophrenia (65, 77), 

it is suggested that variation in paracingulate gyrification, together with the associated 

change in cortical volume observed in schizophrenia in patients with hallucinations, 

might result in impaired reality monitoring ability due to weakened functional or 

structural connectivity with these proximal and distal brain regions (55).   

 

Taken together, connectivity findings in patients with AVH suggest a complex interaction 

between the language, auditory and monitoring networks that are consistent with 

neurocognitive models implicating defective efference signaling and predictive coding. 

Although the literature is not equivocal in this regard, results from connectivity studies 

point to aberrant connectivity between inferior frontal, temporo-parietal and cortical 

midline regions in patients with AVH, implicating these regions as key targets for novel 

interventions that can alter brain activity and connectivity, such as non-invasive brain 

stimulation and real-time fMRI-neurofeedback (rt-fMRI-NF).  

 

CAN NEUROCOGNITIVE MODELS OF AVH INFORM NEW INTERVENTIONS? 

Over the last few decades non-invasive brain stimulation has emerged as a tool with the 

potential to alter brain activation. The available non-invasive brain stimulation 

techniques can be divided into those using magnetic stimulation, and those utilising 

direct currents to modulate neuronal firing. Transcranial magnetic stimulation (TMS) and 

transcranial direct current stimulation (tDCS) have recently been utilised for the 

treatment of AVH in patients with schizophrenia. TMS represents a brain stimulation 

technique based on the principle of electro-magnetic induction of an electric field that is 

passed through the skull to the brain (78). The device creates a strong electric field 

through a coil, which in turn induces a small magnetic field pulse underneath the applied 



scalp area. The flow of ions generated by this field alters the electric charge of cell 

membranes leading to neuronal depolarization or hyperpolarization (79).  

 

TMS can be applied at low frequency (≤1Hz) to decrease cortical excitability. Studies 

have demonstrated that TMS is able to modulate the activity of a particular cortical 

region, resulting in trans-synaptic effects on other distant areas (80). A number of 

studies have utilised TMS for the treatment of AVH and meta-analytic work suggests 

that TMS induces a reduction of AVH in the small to medium effect size range (81). 

TMS has been most commonly applied to language production and comprehension 

regions. Nonetheless, data on the neurophysiological effects of TMS on the AVH 

networks is still relatively sparse. The available reports suggest that TMS affects not 

only the stimulated brain regions, but also connected brain networks raising the 

possibility that this stimulation technique could be used to reconfigure connectivity and 

communication in networks impaired in patients with AVH. For example, 4-weeks of 

TMS to the left STG, resulted in reduction of treatment resistant AVH and was 

associated with decreased activation in the primary auditory cortex (82). Whereas, 10 

days of TMS resulted in significant reduction of AVH (at least 50%), but only in those 

participants who demonstrated a higher regional cerebral blood flow in the STG before 

treatment (27); possibly due to impaired predictive signaling from motor or cortical 

midline regions. Indeed, consistent with this notion, TMS applied to the left tempero-

parietal junction (TPJ) has been associated with reduced cerebral perfusion in the IFG 

and cingulate cortex measured with arterial spin labeling, demonstrating wider network 

effects (83).  

 

Transcranial direct current stimulation (tDCS) is a form of unidirectional current 

stimulation. Among the low-current stimulation protocols, tDCS represents the most 

widely explored for the treatment of AVH. tDCS represents a stimulation in which the 

flow of direct current through two sponge electrodes (cathode and anode) is applied to 



the scalp, which results in changes in cortical excitability by influencing spontaneous 

neural activity (84). Cathodal stimulation reduces spontaneous firing rates, whereas 

anodal stimulation increases firing rates (85). To date only a small number of studies 

have investigated the efficacy and neurophysiological effects of tDCS on AVH e.g. (86). 

One study observed that 10 sessions of tDCS applied to the left TPJ resulted in the 

reduction of AVH and was accompanied by reduced FC in the left TPJ with left anterior 

insula, right IFG, and increased FC of the left TPJ with the left angular gyrus and left 

DLPFC and the precuneus. The reduction of AVH severity was specifically correlated 

with a reduction of FC between the left TPJ and left anterior insula (83). These reports 

suggest that both TMS and tDCS are viable treatment option for refractory AVH. 

However, more and larger studies are needed to confirm the efficacy of stimulation 

protocols, and to investigate the underlying mechanism of action.  

 

The recent technical improvements in functional Magnetic Resonance Imaging (fMRI) 

have enabled the development of real-time protocols for the treatment of AVH (87). 

These fMRI protocols have been developed to provide feedback about brain activation 

in real time in order that participants can progressively achieve voluntary control over 

their brain activity. Due to its high spatial resolution Real-time fMRI- neurofeedback (rt-

fMRI-NF) allows for the precise targeting of specific brain regions, by using either 

structural or functional brain region localisers (87). The signal from a chosen brain 

region(s) is derived by means of blood-oxygen level- depend (BOLD) and is presented 

through a visual feedback interface, usually through a thermometer display. To date rt-

fMRI-NF for the treatment of AVH has only been utilised by two studies. Dyck and 

colleagues utilized this technique to improve AVH by training three patients to up-

regulate neural activity ACC. The ACC was chosen as the key region involved in the 

generation and intensity of AVH and because its role in source and reality monitoring is 

well established. Results demonstrated a reduction in AVH, which was accompanied by 

increased ACC activation and changes in the AVH related networks (88). Indeed, rtf-



MRI-nfb studies have demonstrated that training applied to a single target region can 

influence and reconfigure network connectivity (89, 90). Our own data (in press) shows 

that rt-fMRI-NF applied to the left STG, results in deceased activity in the STG and 

increased FC between the STG and the IFG and the inferior parietal cortex. Changes in 

network connectivity brought about by rtf-MRI-NF may have improved communication 

between speech motor and sensory regions. Intriguingly, enhanced FC between these 

regions was accompanied by a change in patients’ beliefs about the origins of their 

voices (Orlov et al. in press).    

 

CONCLUSIONS AND FUTURE DIRECTIONS 

AVH are a complex phenomenon and researchers are still some way from 

understanding the neural substrate of these aberrant auditory perceptions. Whilst 

neurocognitive models and brain imaging findings can only go so far in explaining the 

complex phenomenology associated with AVH, some progress has been made and 

encouragement can be taken from empirical work that supports existing theoretical 

models of AVH. Whilst it is not always possible to reconcile neuroimaging findings with 

existing models of AVH, there is a substantial body of neuroimaging evidence that 

supports the basic notion that AVH arise through impaired signaling within sensory 

regions and between sensory, motor and monitoring regions. This raises the possibility 

that interventions enabling the modulation of activity and/or the reconfiguration of 

connectivity between these regions in patients with AVH could have ‘theoretically-

guided’ therapeutic benefits. This is important because basing such intervention on 

theoretical models allows researchers to better understand mechanisms of action and to 

formulate clear prediction. The secondary auditory cortex and TPJ region, the IFG, and 

cortical midline structures encompassing the mPFC, ACC and PCS all appear to be 

suitable regions for therapeutic intervention using state-of-the-art techniques such as 

TMS, tDCS and rt-fMRI-NF. A handful of preliminary studies have demonstrated that 

regulating activity within these regions and altering connectivity between them can 



reduce the severity of AVH in patients with treatment refractory symptoms. However, 

large randomized control trials are now needed to carefully test the efficacy of these 

interventions, particularly the longer-term effects. It is also likely that brain stimulation 

and neurofeedback interventions will not work for all patients with AVH. Thus, it is 

important that predictors of treatment response are established during preliminary 

studies.   
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