63 research outputs found

    Evaluation of bleach-sedimentation for sterilising and concentrating Mycobacterium tuberculosis in sputum specimens

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Bleach-sedimentation may improve microscopy for diagnosing tuberculosis by sterilising sputum and concentrating Mycobacterium tuberculosis. We studied gravity bleach-sedimentation effects on safety, sensitivity, speed and reliability of smear-microscopy. Methods This blinded, controlled study used sputum specimens (n = 72) from tuberculosis patients. Bleach concentrations and exposure times required to sterilise sputum (n = 31) were determined. In the light of these results, the performance of 5 gravity bleach-sedimentation techniques that sterilise sputum specimens (n = 16) were compared. The best-performing of these bleach-sedimentation techniques involved adding 1 volume of 5% bleach to 1 volume of sputum, shaking for 10-minutes, diluting in 8 volumes distilled water and sedimenting overnight before microscopy. This technique was further evaluated by comparing numbers of visible acid-fast bacilli, slide-reading speed and reliability for triplicate smears before versus after bleach-sedimentation of sputum specimens (n = 25). Triplicate smears were made to increase precision and were stained using the Ziehl-Neelsen method. Results M. tuberculosis in sputum was successfully sterilised by adding equal volumes of 15% bleach for 1-minute, 6% for 5-minutes or 3% for 20-minutes. Bleach-sedimentation significantly decreased the number of acid-fast bacilli visualised compared with conventional smears (geometric mean of acid-fast bacilli per 100 microscopy fields 166, 95%CI 68-406, versus 346, 95%CI 139-862, respectively; p = 0.02). Bleach-sedimentation diluted paucibacillary specimens less than specimens with higher concentrations of visible acid-fast bacilli (p = 0.02). Smears made from bleach-sedimented sputum were read more rapidly than conventional smears (9.6 versus 11.2 minutes, respectively, p = 0.03). Counting conventional acid-fast bacilli had high reliability (inter-observer agreement, r = 0.991) that was significantly reduced (p = 0.03) by bleach-sedimentation (to r = 0.707) because occasional strongly positive bleach-sedimented smears were misread as negative. Conclusions Gravity bleach-sedimentation improved laboratory safety by sterilising sputum but decreased the concentration of acid-fast bacilli visible on microscopy, especially for sputum specimens containing high concentrations of M. tuberculosis. Bleach-sedimentation allowed examination of more of each specimen in the time available but decreased the inter-observer reliability with which slides were read. Thus bleach-sedimentation effects vary depending upon specimen characteristics and whether microscopy was done for a specified time, or until a specified number of microscopy fields had been read. These findings provide an explanation for the contradictory results of previous studies.Peer Reviewe

    Berberine Chloride Mediates Its Anti-Leishmanial Activity via Differential Regulation of the Mitogen Activated Protein Kinase Pathway in Macrophages

    Get PDF
    BACKGROUND: A complex interplay between Leishmania and macrophages influences parasite survival and necessitates disruption of signaling molecules, eventually resulting in impairment of macrophage function. In this study, we demonstrate the immunomodulatory activity of Berberine chloride in Leishmania infected macrophages. PRINCIPAL FINDINGS: The IC(50) of Berberine chloride, a quaternary isoquinoline alkaloid was tested in an amastigote macrophage model and its safety index measured by a cell viability assay. It eliminated intracellular amastigotes, the IC(50) being 2.8 fold lower than its IC(50) in promastigotes (7.10 µM vs. 2.54 µM) and showed a safety index >16. Levels of intracellular and extracellular nitric oxide (NO) as measured by flow cytometry and Griess assay respectively showed that Berberine chloride in Leishmania infected macrophages increased production of NO. Measurement of the mRNA expression of iNOS, IL-12 and IL-10 by RT-PCR along with levels of IL-12p40 and IL-10 by ELISA showed that in infected macrophages, Berberine chloride enhanced expression of iNOS and IL-12p40, concomitant with a downregulation of IL-10. The phosphorylation status of extracellular signal related kinase (ERK1/2) and p38 mitogen activated protein kinase (p38 MAPK) was studied by western blotting. In infected macrophages, Berberine chloride caused a time dependent activation of p38 MAPK along with deactivation of ERK1/2; addition of a p38 MAPK inhibitor SB203580 inhibited the increased generation of NO and IL-12p40 by Berberine chloride as also prevented its decrease of IL-10. CONCLUSIONS: Berberine chloride modulated macrophage effector responses via the mitogen activated protein kinase (MAPK) pathway, highlighting the importance of MAPKs as an antiparasite target

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Performance of the ALICE experiment at the CERN LHC

    Get PDF
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables
    corecore