11 research outputs found

    A Note on the DQ Analysis of Anisotropic Plates

    Full text link
    Recently, Bert, Wang and Striz [1, 2] applied the differential quadrature (DQ) and harmonic differential quadrature (HDQ) methods to analyze static and dynamic behaviors of anisotropic plates. Their studies showed that the methods were conceptually simple and computationally efficient in comparison to other numerical techniques. Based on some recent work by the present author [3, 4], the purpose of this note is to further simplify the formulation effort and improve computing efficiency in applying the DQ and HDQ methods for these cases

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Study on the Nonlinear Computations of the DQ and DC Methods

    No full text
    to their global domain property, are more efficient for nonlinear problems than the traditional numerical techniques such as finite element and finite difference methods. By introducing the Hadamard product of matrices, we obtain an explicit matrix formulation for the DQ and DC solutions of nonlinear differential and integro-differential equations. Due to its simplicity and flexibility, the present Hadamard product approach makes the DQ and DC methods much easier to use. Many studies on the Hadamard product can be fully exploited for the DQ and DC nonlinear computations. Furthermore, we first present the SJT product of matrix and vector to compute accurately and efficiently the Frechet derivative matrix in the Newton–Raphson method for the solution of the nonlinear formulations. We also propose a simple approach to simplify the DQ or DC formulations for some nonlinear differential operators and, thus, the computational efficiency of these methods is significantly improved. We give the matrix multiplication formulas to efficiently compute the weighting coefficient matrices of the DC method. The spherical harmonics are suggested as the test functions in the DC method to handle the nonlinear differential equations occurring in global and hemispheric weather forecasting problems. Some examples are analyzed to demonstrate the simplicity and efficiency of the presented techniques. It is emphasized that the innovations presented are applicable to the nonlinear computations of the other numerical methods as well. c ○ 1997 John Wiley & Sons, Inc. I

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    corecore