2,715 research outputs found
Acoustics-turbulence interaction
An investigation of the instability frequency was undertaken. Measurements revealed that the hot wire probe induces and sustains stable upstream oscillation of the free shear layer. The characteristics of the free shear layer tone are found to be different from the slit jet wedge edgetone phenomenon. The shear tone induced by a plane wedge in a plane free shear layer was then examined in order to further document the phenomenon. The eigenvalues and eigenfunctions of the tone fundamental show agreement with the spatial stability theory. A comprehensive summary of the results is also included
Bone mineral density in breast cancer patients treated with adjuvant letrozole, tamoxifen, or sequences of letrozole and tamoxifen in the BIG 1-98 study (SAKK 21/07)
Background: The risk of osteoporosis and fracture influences the selection of adjuvant endocrine therapy. We analyzed bone mineral density (BMD) in Swiss patients of the Breast International Group (BIG) 1-98 trial [treatment arms: A, tamoxifen (T) for 5 years; B, letrozole (L) for 5 years; C, 2 years of T followed by 3 years of L; D, 2 years of L followed by 3 years of T]. Patients and methods: Dual-energy X-ray absorptiometry (DXA) results were retrospectively collected. Patients without DXA served as control group. Repeated measures models using covariance structures allowing for different times between DXA were used to estimate changes in BMD. Prospectively defined covariates were considered as fixed effects in the multivariable models. Results: Two hundred and sixty-one of 546 patients had one or more DXA with 577 lumbar and 550 hip measurements. Weight, height, prior hormone replacement therapy, and hysterectomy were positively correlated with BMD; the correlation was negative for letrozole arms (B/C/D versus A), known osteoporosis, time on trial, age, chemotherapy, and smoking. Treatment did not influence the occurrence of osteoporosis (T score < −2.5 standard deviation). Conclusions: All aromatase inhibitor regimens reduced BMD. The sequential schedules were as detrimental for bone density as L monotherap
A cost effectiveness analysis of salt reduction policies to reduce coronary heart disease in four Eastern Mediterranean countries.
BACKGROUND: Coronary Heart Disease (CHD) is rising in middle income countries. Population based strategies to reduce specific CHD risk factors have an important role to play in reducing overall CHD mortality. Reducing dietary salt consumption is a potentially cost-effective way to reduce CHD events. This paper presents an economic evaluation of population based salt reduction policies in Tunisia, Syria, Palestine and Turkey. METHODS AND FINDINGS: Three policies to reduce dietary salt intake were evaluated: a health promotion campaign, labelling of food packaging and mandatory reformulation of salt content in processed food. These were evaluated separately and in combination. Estimates of the effectiveness of salt reduction on blood pressure were based on a literature review. The reduction in mortality was estimated using the IMPACT CHD model specific to that country. Cumulative population health effects were quantified as life years gained (LYG) over a 10 year time frame. The costs of each policy were estimated using evidence from comparable policies and expert opinion including public sector costs and costs to the food industry. Health care costs associated with CHDs were estimated using standardized unit costs. The total cost of implementing each policy was compared against the current baseline (no policy). All costs were calculated using 2010 PPP exchange rates. In all four countries most policies were cost saving compared with the baseline. The combination of all three policies (reducing salt consumption by 30%) resulted in estimated cost savings of 39,000,000 and 31674 LYG in Syria; 1,3000,000,000 and 378439 LYG in Turkey. CONCLUSION: Decreasing dietary salt intake will reduce coronary heart disease deaths in the four countries. A comprehensive strategy of health education and food industry actions to label and reduce salt content would save both money and lives
First Results from the AMoRE-Pilot neutrinoless double beta decay experiment
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search
for neutrinoless double beta decay (0) of Mo with
100 kg of Mo-enriched molybdenum embedded in cryogenic detectors
with a dual heat and light readout. At the current, pilot stage of the AMoRE
project we employ six calcium molybdate crystals with a total mass of 1.9 kg,
produced from Ca-depleted calcium and Mo-enriched molybdenum
(CaMoO). The simultaneous detection of
heat(phonon) and scintillation (photon) signals is realized with high
resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin
temperatures. This stage of the project is carried out in the Yangyang
underground laboratory at a depth of 700 m. We report first results from the
AMoRE-Pilot search with a 111 kgd live exposure of
CaMoO crystals. No evidence for
decay of Mo is found, and a upper limit is set for the
half-life of 0 of Mo of y at 90% C.L.. This limit corresponds to an effective
Majorana neutrino mass limit in the range eV
Impact of routine vaccination against Haemophilus influenzae type b in The Gambia: 20 years after its introduction
Background:
In 1997, The Gambia introduced three primary doses of Haemophilus influenzae type b (Hib) conjugate vaccine without a booster in its infant immunisation programme along with establishment of a population-based surveillance on Hib meningitis in the West Coast Region (WCR). This surveillance was stopped in 2002 with reported elimination of Hib disease. This was re-established in 2008 but stopped again in 2010. We aimed to re-establish the surveillance in WCR and to continue surveillance in Basse Health and Demographic Surveillance System (BHDSS) in the east of the country to assess any shifts in the epidemiology of Hib disease in The Gambia.
Methods:
In WCR, population-based surveillance for Hib meningitis was re-established in children aged under-10 years from 24 December 2014 to 31 March 2017, using conventional microbiology and Real Time Polymerase Chain Reaction (RT-PCR). In BHDSS, population-based surveillance for Hib disease was conducted in children aged 2-59 months from 12 May 2008 to 31 December 2017 using conventional microbiology only. Hib carriage survey was carried out in pre-school and school children from July 2015 to November 2016.
Results:
In WCR, five Hib meningitis cases were detected using conventional microbiology while another 14 were detected by RT-PCR. Of the 19 cases, two (11%) were too young to be protected by vaccination while seven (37%) were unvaccinated. Using conventional microbiology, the incidence of Hib meningitis per 100 000-child-year (CY) in children aged 1-59 months was 0.7 in 2015 (95% confidence interval (CI) = 0.0-3.7) and 2.7 (95% CI = 0.7-7.0) in 2016. In BHDSS, 25 Hib cases were reported. Nine (36%) were too young to be protected by vaccination and five (20%) were under-vaccinated for age. Disease incidence peaked in 2012-2013 at 15 per 100 000 CY and fell to 5-8 per 100 000 CY over the subsequent four years. The prevalence of Hib carriage was 0.12% in WCR and 0.38% in BHDSS.
Conclusions:
After 20 years of using three primary doses of Hib vaccine without a booster Hib transmission continues in The Gambia, albeit at low rates. Improved coverage and timeliness of vaccination are of high priority for Hib disease in settings like Gambia, and there are currently no clear indications of a need for a booster dose
A Cellular Potts Model simulating cell migration on and in matrix environments
Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
GATE : a simulation toolkit for PET and SPECT
Monte Carlo simulation is an essential tool in emission tomography that can
assist in the design of new medical imaging devices, the optimization of
acquisition protocols, and the development or assessment of image
reconstruction algorithms and correction techniques. GATE, the Geant4
Application for Tomographic Emission, encapsulates the Geant4 libraries to
achieve a modular, versatile, scripted simulation toolkit adapted to the field
of nuclear medicine. In particular, GATE allows the description of
time-dependent phenomena such as source or detector movement, and source decay
kinetics. This feature makes it possible to simulate time curves under
realistic acquisition conditions and to test dynamic reconstruction algorithms.
A public release of GATE licensed under the GNU Lesser General Public License
can be downloaded at the address http://www-lphe.epfl.ch/GATE/
Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS
The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
- …