407 research outputs found

    Gradient Trigger Mechanisms Related to Bistability Regimes in a Leech Heartbeat Model

    No full text
    We studied bursting patterns underlied by bifurcation phenomena and chaotic spiking in a computational leech heartbeat model. We observed the gradient physical properties of the ISI trains and amplitude (shift of the membrane potential) when the parameter gleak was mildly changed and found different bistable areas. The resulting computation implies that (i) classification of the intensity of the input information is feasible in this regime, (ii) a neuron’s working level can be marked by its range in a typical bifurcation, and (iii) there are invisible triggers underlying subtle mechanisms in the model.Ми досліджували пачкові імпульсні патерни, що формувалися на основі феноменів біфуркації, та хаотичну імпульсну активність у комп’ютерній моделі керування серцевими скороченнями у п’явки. Ми спостерігали градієнтність фізичних властивостей, що визначали характеристики послідовностей імпульсів та амплітуду (зміщення мембранного потенціалу), при невеликих змінах параметра gleak (провідності витоку). Було також виявилено, що існують різні зони бістабільності. Результати комп’ютерного моделювання вказують на те, що, по-перше, в такому режимі може забезпечуватися класифікація інтенсивності вхідної інформації; по-друге, робочий рівень для нейрона визначаеться його положенням у типовій біфуркації, і, по-третє, існують «невидимі» тригери, на яких базуються тонкі механізми моделі

    Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, \k40 is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the \k40-contamination levels of 1010\sim 10^{-10} and 1013\sim 10^{-13} g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are 8×10138 \times 10^{-13} g/g and 3×10173 \times 10^{-17} g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.Comment: 18 pages, 4 figures, 3 table

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Charged-particle distributions in √s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb−1170 μb−1, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators
    corecore