107 research outputs found
Light cone dynamics and reverse Kibble-Zurek mechanism in two-dimensional superfluids following a quantum quench
We study the dynamics of the relative phase of a bilayer of two-dimensional
superfluids after the two superfluids have been decoupled. We find that on
short time scales the relative phase shows "light cone" like dynamics and
creates a metastable superfluid state, which can be supercritical. We also
demonstrate similar light cone dynamics for the transverse field Ising model.
On longer time scales the supercritical state relaxes to a disordered state due
to dynamical vortex unbinding. This scenario of dynamically suppressed vortex
proliferation constitutes a reverse-Kibble-Zurek effect. We study this effect
both numerically using truncated Wigner approximation and analytically within a
newly suggested time dependent renormalization group approach (RG). In
particular, within RG we show that there are two possible fixed points for the
real time evolution corresponding to the superfluid and normal steady states.
So depending on the initial conditions and the microscopic parameters of the
Hamiltonian the system undergoes a non-equilibrium phase transition of the
Kosterlitz-Thouless type. The time scales for the vortex unbinding near the
critical point are exponentially divergent, similar to the equilibrium case.Comment: 14 pages, 10 figure
A supercritical superfluid and vortex unbinding following a quantum quench
We study the dynamics of the relative phase of a bilayer of two-dimensional
superfluids after the two superfluids have been decoupled, using truncated
Wigner approximation. On short time scales the relative phase shows "light
cone" like thermalization and creates a metastable superfluid state, which can
be supercritical. On longer time scales this state relaxes to a disordered
state due to dynamical vortex unbinding. This scenario of dynamically
suppressed vortex proliferation constitutes a {\it reverse-Kibble-Zurek
effect}. We observe dynamics of creation of vortex anti-vortex pairs and their
consequent motion. Our predictions can be directly measured in interference
experiments, see Ref 1.Comment: 4 pages, 5 figure
Recommended from our members
A novel 3D imaging system for strawberry phenotyping
Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. A low cost multi-view stereo (MVS) imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique
Low-level laser therapy associated to a resistance training protocol on bone tissue in diabetic rats
Relapses in Patients Treated with High-Dose Biotin for Progressive Multiple Sclerosis
High-dose biotin (HDB) is a therapy used in non-active progressive multiple sclerosis (PMS). Several reports have suggested that HDB treatment may be associated with an increased risk of relapse. We aimed to determine whether HDB increases the risk of clinical relapse in PMS and describe the characteristics of the patients who experience it. We conducted a French, multicenter, retrospective study, comparing a group of PMS patients treated with HDB to a matched control group. Poisson regression was applied to model the specific statistical distribution of the annualized relapse rate (ARR). A propensity score (PS), based on the inverse probability of treatment weighting (IPTW), was used to adjust for indication bias and included the following variables: gender, primary PMS or not, age, EDSS, time since the last relapse, and co-prescription of a DMT. Two thousand six hundred twenty-eight patients treated with HDB and 654 controls were analyzed with a follow-up of 17 ± 8 months. Among them, 148 validated relapses were observed in the group treated with biotin and 38 in the control group (p = 0.62). After adjustment based on the PS, the ARR was 0.044 ± 0.23 for the biotin-treated group and 0.028 ± 0.16 for the control group (p = 0.18). The more relapses there were before biotin, the higher the risk of relapse during treatment, independently from the use of HDB. While the number of relapses reported for patients with no previous inflammatory activity receiving biotin has gradually increased, the present retrospective study is adequately powered to exclude an elevated risk of relapse for patients with PMS treated with HDB.Observatoire Français de la Sclérose en Plaque
Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration
Instability of most prototypical metal organic frameworks (MOFs) in the
presence of moisture is always a limita- tion for industrial scale development.
In this work, we examine the dissociation mechanism of microporous paddle wheel
frameworks M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co; bdc= 1,4-benzenedicarboxylate;
ted= triethylenediamine] in controlled humidity environments. Combined in-situ
IR spectroscopy, Raman, and Powder x-ray diffraction measurements show that the
stability and modification of isostructual M(bdc)(ted)0.5 compounds upon
exposure to water vapor critically depend on the central metal ion. A
hydrolysis reaction of water molecules with Cu-O-C is observed in the case of
Cu(bdc)(ted)0.5. Displacement reactions of ted linkers by water molecules are
identified with Zn(bdc)(ted)0.5 and Co(bdc)(ted)0.5. In contrast,.
Ni(bdc)(ted)0.5 is less suscept- ible to reaction with water vapors than the
other three compounds. In addition, the condensation of water vapors into the
framework is necessary to initiate the dissociation reaction. These findings,
supported by supported by first principles theoretical van der Waals density
functional (vdW-DF) calculations of overall reaction enthalpies, provide the
necessary information for de- termining operation conditions of this class of
MOFs with paddle wheel secondary building units and guidance for developing
more robust units
The nonperturbative functional renormalization group and its applications
The renormalization group plays an essential role in many areas of physics,
both conceptually and as a practical tool to determine the long-distance
low-energy properties of many systems on the one hand and on the other hand
search for viable ultraviolet completions in fundamental physics. It provides
us with a natural framework to study theoretical models where degrees of
freedom are correlated over long distances and that may exhibit very distinct
behavior on different energy scales. The nonperturbative functional
renormalization-group (FRG) approach is a modern implementation of Wilson's RG,
which allows one to set up nonperturbative approximation schemes that go beyond
the standard perturbative RG approaches. The FRG is based on an exact
functional flow equation of a coarse-grained effective action (or Gibbs free
energy in the language of statistical mechanics). We review the main
approximation schemes that are commonly used to solve this flow equation and
discuss applications in equilibrium and out-of-equilibrium statistical physics,
quantum many-particle systems, high-energy physics and quantum gravity.Comment: v2) Review article, 93 pages + bibliography, 35 figure
- …