65 research outputs found

    Photoproduction of D∗±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D∗±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb−1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {Ξn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The D∗D^* meson is centrally produced with pseudorapidity {∣η∣1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive D∗D^* production is 8.85±0.93(stat.)−0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Observation of isolated high-E_T photons in deep inelastic scattering

    Get PDF
    First measurements of cross sections for isolated prompt photon production in deep inelastic ep scattering have been made using the ZEUS detector at the HERA electron-proton collider using an integrated luminosity of 121 pb^-1. A signal for isolated photons in the transverse energy and rapidity ranges 5 < E_T^gamma < 10 GeV and -0.7 < eta^gamma < 0.9 was observed for virtualities of the exchanged photon of Q^2 > 35 GeV^2. Cross sections are presented for inclusive prompt photons and for those accompanied by a single jet in the range E_T^jet \geq 6 GeV and -1.5 \leq eta^jet < 1.8. Calculations at order alpha^3alpha_s describe the data reasonably well.Comment: 16 pages, 5 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange1−−3 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV

    Full text link
    The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure

    US hegemony and the origins of Japanese nuclear power : the politics of consent

    Get PDF
    This paper deploys the Gramscian concepts of hegemony and consent in order to explore the process whereby nuclear power was brought to Japan. The core argument is that nuclear power was brought to Japan as a consequence of US hegemony. Rather than a simple manifestation of one state exerting material ‘power over' another, bringing nuclear power to Japan involved a series of compromises worked out within and between state and civil society in both Japan and the USA. Ideologies of nationalism, imperialism and modernity underpinned the process, coalescing in post-war debates about the future trajectory of Japanese society, Japan's Cold War alliance with the USA and the role of nuclear power in both. Consent to nuclear power was secured through the generation of a psychological state in the public mind combining the fear of nuclear attack and the hope of unlimited consumption in a nuclear-fuelled post-modern world

    Measurement of dijet photoproduction for events with a leading neutron at HERA

    Get PDF
    Differential cross sections for dijet photoproduction and this process in association with a leading neutron, e+ + p -> e+ + jet + jet + X (+ n), have been measured with the ZEUS detector at HERA using an integrated luminosity of 40 pb-1. The fraction of dijet events with a leading neutron was studied as a function of different jet and event variables. Single- and double-differential cross sections are presented as a function of the longitudinal fraction of the proton momentum carried by the leading neutron, xL, and of its transverse momentum squared, pT^2. The dijet data are compared to inclusive DIS and photoproduction results; they are all consistent with a simple pion-exchange model. The neutron yield as a function of xL was found to depend only on the fraction of the proton beam energy going into the forward region, independent of the hard process. No firm conclusion can be drawn on the presence of rescattering effects.Comment: 40 pages, 18 figure

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the ttÂŻ → dilepton channel (lepton = e,ÎŒ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the ttÂŻ → dilepton and ttÂŻ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV
    • 

    corecore