862 research outputs found

    Mapping geodetically inferred Antarctic ice surface height changes into thickness changes: a sensitivity study

    Get PDF
    Determining recent Antarctic ice volume changes from satellite altimeter measurements of ice surface height requires a correction for contemporaneous vertical crustal deformation. This correction must consider two main sources of crustal deformation: (1) ongoing glacial isostatic adjustment (GIA), that is, the deformational, gravitational, and rotational response to Late Pleistocene and Holocene ice and ocean mass changes and (2) modern ice mass change. In this study, we seek to quantify the uncertainties associated with each of these corrections. Corrections of ice surface height changes for correction 1 have generally involved the adoption of global models of GIA defined by some preferred combination of ice history and mantle viscoelastic structure. We have computed the GIA correction generated from a coupled ice sheet–sea level model and a realistic Earth model incorporating three-dimensional viscoelastic structure. Integrating the difference between this correction and those from recent GIA analyses widely adopted in the literature yields an uncertainty in total present-day ice volume change equivalent to approximately 10 % of Antarctic ice mass loss inferred for the period 2010–2020. This reinforces earlier work indicating that ice histories characterized by relatively high excess ice volume at the Last Glacial Maximum may be introducing a significant error in estimates of modern melt rates. Regarding correction 2, a spatially invariant scaling has commonly been used to convert GIA-corrected ice surface height changes obtained from satellite altimetry to ice volume estimates. We adopt modeling results based on a projection of Antarctic ice mass change over the period 2015–2055 to demonstrate a spatial variability in the scaling of up to 10 % across the ice sheet. Furthermore, using these calculations, we find a systematic error of ∼ 3 % in the projected net ice volume change, with most of the difference arising in areas of West Antarctica above mantle zones of low viscosity.</p

    Infrared studies of the Be star X Per

    Full text link
    Photometric and spectroscopic results are presented for the Be star X Per/HD 24534 from near-infrared monitoring in 2010-2011. The star is one of a sample of selected Be/X-ray binaries being monitored by us in the near-IR to study correlations between their X ray and near-IR behaviour. Comparison of the star's present near-IR magnitudes with earlier records shows the star to be currently in a prominently bright state with mean J, H, K magnitudes of 5.49, 5.33 and 5.06 respectively. The JHK spectra are dominated by emission lines of HeI and Paschen and Brackett lines of HI. Lines of OI 1.1287 and 1.3165 micron are also present and their relative strength indicates, since OI 1.1287 is stronger among the two lines, that Lyman beta fluorescence plays an important role in their excitation. Recombination analysis of the HI lines is done which shows that the Paschen and Brackett line strengths deviate considerably from case B predictions. These deviations are attributed to the lines being optically thick and this supposition is verified by calculating the line center optical depths predicted by recombination theory. Similar calculations indicate that the Pfund and Humphrey series lines should also be expected to be optically thick which is found to be consistent with observations reported in other studies. The spectral energy distribution of the star is constructed and shown to have an infrared excess. Based on the magnitude of the IR excess, which is modeled using a free-free contribution from the disc, the electron density in the disc is estimated and shown to be within the range of values expected in Be star discs.Comment: Accepted for publication in MNRAS, 7 pages, 6 figure

    Interstellar polarization and grain alignment: the role of iron and silicon

    Full text link
    We compiled the polarimetric data for a sample of lines of sight with known abundances of Mg, Si, and Fe. We correlated the degree of interstellar polarization PP and polarization efficiency (the ratio of PP to the colour excess E(BV)E(B-V) or extinction AVA_V) with dust phase abundances. We detect an anticorrelation between PP and the dust phase abundance of iron in non silicate - containing grains ]_\rm d, a correlation between PP and the abundance of Si, and no correlation between P/E(BV)P/E(B-V) or P/AVP/A_V and dust phase abundances. These findings can be explained if mainly the silicate grains aligned by the radiative mechanism are responsible for the observed interstellar linear polarization.Comment: Accepted for publication in Astronomy and Astrophysic

    Linear/circular spectropolarimetry of diffuse interstellar bands

    Full text link
    Context. The identification of the carriers of diffuse interstellar bands (DIBs) remains one of the long-standing mysteries in astronomy. The detection of a polarisation signal in a DIB profile can be used to distinguish between a dust or gas-phase carrier. The polarisation profile can give additional information on the grain or molecular properties of the absorber. In order to detect and measure the linear and circular polarisation of the DIBs we observed reddened lines of sight showing continuum polarisation. For this study we selected two stars HD 197770 and HD 194279. We used high-resolution (R~64.000) spectropolarimetry in the wavelength range from 3700 to 10480 Angstrom with the ESPaDOnS echelle spectrograph mounted at the CFHT. Results. High S/N and high resolution Stokes V (circular), Q and U (linear) spectra were obtained. We constrained upper limits by a factor of 10 for previously observed DIBs. Furthermore, we analysed ~30 additional DIBs for which no spectropolarimetry data has been obtained before. This included the 9577 A DIB and the 8621 A DIB. Conclusions. The lack of polarisation in 45 DIB profiles suggests that none of the absorption lines is induced by a grain-type carrier. The strict upper limits, less than ~0.01%, derived for the observed lines-of-sight imply that if DIBs are due to gas-phase molecules these carriers have polarisation efficiencies which are at least 6 times, and up to 300 times, smaller than those predicted for grain-related carriers.Comment: 6 pages + 13 pages online material, submitted to A&

    Interstellar extinction and polarization -- A spheroidal dust grain approach perspective

    Full text link
    We extend and investigate the spheroidal model of interstellar dust grains used to simultaneously interpret the observed interstellar extinction and polarization curves. We compare our model with similar models recently suggested by other authors, study its properties and apply it to fit the normalized extinction A(λ)/AVA(\lambda)/A_{\rm V} and the polarizing efficiency P(λ)/A(λ)P(\lambda)/A(\lambda) measured in the near IR to far UV region for several stars seen through one large cloud. We conclude that the model parameter Ω\Omega being the angle between the line of sight and the magnetic field direction can be more or less reliably determined from comparison of the theory and observations. This opens a way to study the spatial structure of interstellar magnetic fields by using multi-wavelength photometric and polarimetric observations.Comment: 11 pages, 4 figures and 4 tables, To appear in MNRAS (added

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
    corecore