Abstract

We extend and investigate the spheroidal model of interstellar dust grains used to simultaneously interpret the observed interstellar extinction and polarization curves. We compare our model with similar models recently suggested by other authors, study its properties and apply it to fit the normalized extinction A(λ)/AVA(\lambda)/A_{\rm V} and the polarizing efficiency P(λ)/A(λ)P(\lambda)/A(\lambda) measured in the near IR to far UV region for several stars seen through one large cloud. We conclude that the model parameter Ω\Omega being the angle between the line of sight and the magnetic field direction can be more or less reliably determined from comparison of the theory and observations. This opens a way to study the spatial structure of interstellar magnetic fields by using multi-wavelength photometric and polarimetric observations.Comment: 11 pages, 4 figures and 4 tables, To appear in MNRAS (added

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020