88 research outputs found

    Coherent and squeezed states in black-hole evaporation

    Get PDF
    In earlier Letters, we adopted a complex approach to quantum processes in the formation and evaporation of black holes. Taking Feynman's +iϵ+i\epsilon prescription, rather than than one of the more usual approaches, we calculated the quantum amplitude (not just the probability density) for final weak-field configurations following gravitational collapse to a black hole with subsequent evaporation. What we have done is to find quantum amplitudes relating to a pure state at late times following black-hole matter collapse. Such pure states are then shown to be susceptible to a description in terms of coherent and squeezed states - in practice, this description is not very different from that for the well-known highly-squeezed final state of the relic radiation background in inflationary cosmology. The simplest such collapse model involves Einstein gravity with a massless scalar field. The Feynman approach involves making the boundary-value problem for gravity and a massless scalar field well-posed. To define this, let T be the proper-time separation, measured at spatial infinity, between two space-like hypersurfaces on which initial (collapse) and final (evaporation) data are posed. Then, in this approach, one rotates T by a complex phase exp(-i\delta) into the lower half-plane. In an adiabatic approximation, the resulting quantum amplitude may be expressed in terms of generalised coherent states of the quantum oscillator, and a physical interpretation is given. A squeezed-state representation, as above, then follows

    Scalar--Field Amplitudes in Black--Hole Evaporation

    Full text link
    We study the quantum-mechanical decay of a Schwarzschild-like black hole into almost-flat space and weak radiation at a very late time, evaluating quantum amplitudes (not just probabilities) for transitions from initial to final states. No information is lost. The model contains gravity and a massless scalar field. The quantum amplitude to go from given initial to final bosonic data in a slightly complexified time-interval T=τexp(iθ)T={\tau}{\exp}(-i{\theta}) at infinity is approximately exp(I)\exp(-I), where II is the (complex) Euclidean action of the classical solution filling in between the boundary data. And in a locally supersymmetric (supergravity) theory, the amplitude const. exp(-I) is exact. Dirichlet boundary data for gravity and the scalar field are posed on an initial spacelike hypersurface extending to spatial infinity, just prior to collapse, and on a corresponding final spacelike surface, sufficiently far to the future of the initial surface to catch all the Hawking radiation. In an averaged sense this radiation has an approximately spherically-symmetric distribution. If the time-interval TT were exactly real, the resulting `hyperbolic Dirichlet boundary-value problem' would not be well posed. If instead (`Euclidean strategy'), one takes TT complex, as above (0<θπ/20<\theta{\leq}{\pi}/2), the field equations become strongly elliptic, with a unique solution to the classical boundary-value problem. Expanding the bosonic part of the action to quadratic order in perturbations about the classical solution gives the quantum amplitude for weak-field final configurations, up to normalization. Such amplitudes are calculated for weak final scalar fields.Comment: Submitted to Physics Letters B, Friday 23rd July 200

    Quantum amplitudes in black-hole evaporation: Spins 1 and 2

    Full text link
    Quantum amplitudes for s=1s=1 at Maxwell fields and for s=2s=2 linearised gravitational wave perturbations of a spherically symmetric Einstein/massless scalar background, describing gravitational collapse to a black hole, are treated by analogy with a previous treatment of s=0s=0 scalar-field perturbations of gravitational collapse at late times. In both the s=1s=1 and s=2s=2 cases, we isolate suitable 'co-ordinate' variables which can be taken as boundary data on a final space-like hypersurface ΣF\Sigma_F. For simplicity, we take the data on an initial pre-collapse surface ΣI\Sigma_I to be exactly spherically symmetric. The (large) Lorentzian proper-time interval between ΣI,ΣF\Sigma_{I}, \Sigma_{F}, measured at spatial infinity, is denoted by TT. The complexified classical boundary-value problem is expected to be well-posed, provide that the time interval TT has been rotated into the complex: TTexp(iθ)T\to{\mid}T{\mid}\exp(-i\theta), for 0<θπ/20<\theta\leq{\pi}/2. We calculate the second-variation classical Lorenztian action Sclass(2)S ^{(2)}_{\rm class}. Following Feynman, we recover the Lorentzian quantum amplitude by taking the limit as θ0+\theta\to 0_+ of the semi-classical amplitude exp(iSclass(2))\exp(iS^{(2)}_{\rm class}). The boundary data for s=1 s=1 involve the Maxwell magnetic field; the data for s=2s=2 involve the magnetic part of the Weyl curvature tensor. The magnetic boundary conditions are related to each other and to the natural s=12s={1 \over 2} boundary conditions by supersymmetry

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Measurement of prompt photon production in sNN√=8.16 TeV p+Pb collisions with ATLAS

    Get PDF
    The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN√=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb−1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.We acknowledge the support of ANPCyT, Argentina; YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portu-gal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, in-dividual groups and members have received support from BCKDF, Canarie, CRC and Compute Canada, Canada; COST, ERC, ERDF, Hori-zon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV

    Get PDF
    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached
    corecore