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Abstract

In earlier Letters, we adopted a complex approach to quantum processes in the formation and evaporation of black holes. Taking
+iε prescription, rather than one of the more usual approaches, we calculated the quantum amplitude (not just the probability densit
weak-field configurations following gravitational collapse to a black hole with subsequent evaporation. What we have done is to find
amplitudes relating to a pure state at late times following black-hole matter collapse. Such pure states are then shown to be susc
description in terms of coherent and squeezed states—in practice, this description is not very different from that for the well-know
squeezed final state of the relic radiation background in inflationary cosmology. The simplest such collapse model involves Einstein gra
massless scalar field. The Feynman approach involves making the boundary-value problem for gravity and a massless scalar field we
define this, letT be the proper-time separation, measured at spatial infinity, between two space-like hypersurfaces on which initial (colla
final (evaporation) data are posed. Then, in this approach, one rotatesT → |T |exp(−iδ) into the lower half-plane. In an adiabatic approximatio
the resulting quantum amplitude may be expressed in terms of generalised coherent states of the quantum oscillator, and a physical in
is given. A squeezed-state representation, as above, then follows.
 2006 Elsevier B.V.Open access under CC BY license.
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1. Introduction

We begin by describing Feynman’s+iε approach[1] in the
context of black-hole evaporation. In[2–12], this treatment was
described and applied to the calculation of quantum amplitu
(not just probabilities) for particle production, following grav
tational collapse to a black hole. Suppose, for definiteness
one’s Lagrangian contains Einstein gravity coupled to a
massless scalar field. Asymptotically-flat initial data are po
on an initial space-like hypersurfaceΣI , and final data on a
surfaceΣF , separated fromΣI by a (large) real Lorentzia
time-intervalT , as measured at spatial infinity. Suppose f
ther, for simplicity, that the initial data onΣI are spherically
symmetric, corresponding to a diffuse slowly-moving init
matter distribution. The final data for gravity+ scalar are taken
to have a ‘background’ spherically-symmetric part, plus sm
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non-spherical perturbations, which correspond to gravitons
massless-scalar particles.

Following Feynman’s+iε procedure[1], one rotates the
time-interval T into the complex:T → |T |exp(−iδ), with
0< δ � π/2. The classical boundary-value problem, for a co
plex 4-metricgµν and scalar fieldφ given the above data o
ΣI , ΣF , is then expected to be well-posed, unlike the ill-po
caseδ = 0 (or equivalentlyT real) [3,13,14]. One can evaluat
the second-variation classical actionS

(2)
classas a functional of the

(still real) boundary data and as a function of the complex v
able T . One then computes the corresponding semi-clas
quantum amplitude, proportional to exp(iS

(2)
class), and can also

include loop corrections, if appropriate. Finally, the Lorentz
quantum amplitude for black-hole evaporation (again, not
the probability density) is recovered by taking the limit
δ → 0+.

In this Letter, we study such black-hole evaporation am
tudes, which were constructed in detail in[5–8,10–12], but now
in the context of coherent states[15], which resemble ‘classica
states’, and of squeezed states[16], which are purely quantum
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mechanical. Although our motivation originated with the qu
tion of black-hole radiation, there are also strong connect
between this work and the study of the relic cosmic microw
background radiation (CMBR) induced by inflationary cosm
logical perturbations.

In inflationary cosmology, the field modes are in their a
abatic ground state, with short wavelengths near the sta
inflation. Due to the accelerated expansion of the universe
ing inflation, quantum fluctuations are amplified into mac
scopic or classical perturbations. The early-time fluctuat
lead to the formation of large-scale structure in the unive
and also contribute to the anisotropies in the CMBR. The
nal state for the perturbations is a two-mode highly-squee
state for modes whose radius is much greater than the Hu
radius[17], pairs of field quanta being produced at late tim
with opposite momenta. Tensor(s = 2) fluctuations in the met
ric, for example, are predicted to give rise to relic gravitatio
waves. By comparison, electromagnetic waves(s = 1) cannot
be squeezed in the same way.

In either case, cosmological or black hole, one works wit
an adiabatic approximation for the perturbative modes. Wri
k for a typical perturbative frequency, one requiresk � H in
the cosmological case, whereH = (ȧ/a) anda(t) is the scale
factor. In the black-hole case, the space–time geometry a
times, in the region containing a stream of outgoing radiat
is given by a Vaidya metric[4,8,18,19]with a slowly-varying
‘mass function’m(t, r). The adiabatic condition then readsk �
|ṁ/m|.

In applying the squeezed-state formalism, one finds, in
case of cosmological perturbations, that these evolve es
tially according to a set of Schrödinger equations[20]. Such
perturbations, whether of density, rotational or gravitatio
type, starting in an initial vacuum state, are transformed
a highly-squeezed vacuum state, with many particles,
ing a large variance in their amplitude (particle number),
small (squeezed) phase variations. The squeezing of co
logical perturbations may be suppressed at small wavelen
but it should be present at long wavelengths, especially
gravitational waves[21]. These perturbations also induce t
anisotropies at large angular scales, as observed in the CM
Their wavelengths today are comparable with or greater
the Hubble radius. The above amplification of the initial ze
point fluctuations gives rise to standing waves with a fix
phase, rather than traveling waves. The relic perturbations i
high-squeezing or WKB limit can be described as a stocha
collection of standing waves. Although this paragraph has
viewed the application to cosmology, a similar picture emer
in the application to black-hole evaporation.

Section2 outlines the main features of the above comp
approach to the calculation of quantum amplitudes (not
probabilities) for data (spinss = 0,1,2) prescribed on a late
time final hypersurfaceΣF . This requires a rotation:T →
|T |exp(−iδ) into the lower half-plane. The resulting amp
tudes are then related to coherent and squeezed states
tions 3–5 describe coherent states, generalised coherent s
and squeezed states, respectively. In Section6, the small angle
δ (above), through which the timeT at infinity is rotated into
-
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the complex, is related to the large amount of squeezing w
has been applied to give the final state. Section7 contains a
brief conclusion.

2. The quantum amplitude for late-time data

Consider first the case of a rotation into the complex of
time-intervalT , measured at spatial infinity, by a moderat
small angleδ, as above. One expects that the resulting c
sical solution(gµν,φ) of the coupled Einstein/massless-sca
field equations is slightly complexified, by comparison w
a Lorentzian-signature solution. By suitable choice of coo
nates(t, r, θ, ϕ), the spherically-symmetric ‘background’ pa
of the metric may be written in the form[2,6]

(2.1)ds2 = −eb dt2 + ea dr2 + r2(dθ2 + sin2 θ dϕ2),
whereb = b(t, r), a = a(t, r), and the spherically-symmetr
‘background’ partΦ of the scalar field has the formΦ =
Φ(t, r). The coupled Lorentzian-signature Einstein/scalar fi
equations for this spherically-symmetric configuration
given by the analytic continuation of the Riemannian field eq
tions (3.7)–(3.11) of[5], on making the replacement

(2.2)t = τ exp(−iϑ),

whereτ is the ‘Riemannian time-coordinate’ of[5], and where
the real numberϑ should be rotated from 0 toπ/2.

Small non-spherical perturbations in the boundary d
given on the final late-time hypersurfaceΣF consist of the per
turbed part of the intrinsic 3-dimensional spatial metrichijF on
ΣF , together with the perturbations in the scalar fieldφF on
ΣF . As above, these correspond to gravitons and to mass
scalar particles, propagating on the spherically-symmetric c
sical background(gµν,Φ). For example, the linearised sca
perturbationsφ(1), given[2] by φ = Φ + φ(1), may be first de-
composed as in Eq. (6) of[2], namely as:

(2.3)φ(1)(t, r, θ, ϕ) = 1

r

∞∑
�=0

m=�∑
m=−�

Y�m(Ω)R�m(t, r).

Here,Y�m(Ω) denotes the(�,m) spherical harmonic of[22].
The scalar field equation decouples for each(�,m), leading to
the mode equation

(
e(b−a)/2∂r

)2
R�m − (∂t )

2R�m

(2.4)− 1

2

(
∂t (a − b)

)
(∂tR�m) − V�(t, r)R�m = 0,

where

(2.5)V�(t, r) = eb(t,r)

r2

(
�(� + 1) + 2m(t, r)

r

)

is real and positive in the Lorentzian-signature case. The ‘m
function’ m(t, r), which would equal the constant massM for
an exact Schwarzschild geometry[23], is defined by

(2.6)e−a(t,r) = 1− 2m(t, r)

r
.
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An analogous harmonic decomposition can be given for w
gravitational-wave perturbations about the spherical ba
ground[10].

In most regions of the classical space–time, except for
central region where the black hole is formed, the metric fu
tionsa(t, r) andb(t, r) vary ‘slowly’ or ‘adiabatically’. In this
case, one can consider a radial mode solution for (say) a
turbed scalar field, of the form[6]

(2.7)R�m(t, r) ∼ exp(ikt)ξk�m(t, r),

whereξk�m(t, r) varies ‘slowly’ with respect tot . This will oc-
cur near spatial infinity, and it will also occur, provided that
time-intervalT is sufficiently large, in a neighbourhood of th
final hypersurfaceΣF . The mode equation(2.4), (2.5)then re-
duces[6] to

(2.8)e(b−a)/2 ∂

∂r

(
e(b−a)/2∂ξk�m

∂r

)
+ (

k2 − V�

)
ξk�m = 0.

The spherically-symmetric background metric in this reg
can be represented to high accuracy by a Vaidya metric[8,
18,19], which describes the (on average) spherically-symme
outflow of massless matter. The principal condition for the
lidity of the adiabatic expansion is[6] that

(2.9)|k| � |ṁ/m|.
In analysing the behaviour of the radial mode equa

(2.8), it is natural to define a generalisationr∗ of the standard
Regge–Wheeler or ‘tortoise’ coordinater∗

S for the Schwarz-
schild geometry[23], according to

(2.10)
∂

∂r∗ = e(b−a)/2 ∂

∂r
.

The approximate (adiabatic) mode equation(2.8) then reads

(2.11)
∂2ξk�m

∂r∗2
+ (

k2 − V�

)
ξk�m = 0.

We consider here, for definiteness, a set of suitable ra
functions{ξk�m(r)} on the final surfaceΣF , since it is here tha
the non-trivial boundary data are posed. Since the mode e
tion (2.11)does not depend on the quantum numberm, we may
chooseξk�m(r) = ξk�(r), independently ofm. The boundary
condition of regularity at the spatial origin{r = 0} [6] implies
that

(2.12)ξk�(r) = const× (kr)�+1 + O
(
(kr)�+3)

asr → 0+. For the boundary condition on theξk�(r) asr → ∞,
note that the potentialV�(r) decreases sufficiently rapidly, a
r → ∞, that a real solution to Eq.(2.11)behaves near{r = ∞}
according to

(2.13)ξk�(r) ∼ (
zk� exp

(
ikr∗

S

) + z∗
k� exp

(−ikr∗
S

))
.

Here, thezk� are certain dimensionless complex coefficien
which must be determined by using the differential equa
(2.11)together with the regularity conditions. Further[6], there
is a natural normalisation of the basis{ξk�(r)} of radial wave-
functions.
k
-

e
-

r-

c
-

l

a-

,

We continue, for purposes of exposition, to study the cas
scalar perturbations, with a slightly complexified time-inter
at infinity, T = |T |exp(−iδ), for 0 < δ � π/2. The relevant
boundary data for anisotropic perturbationsφ(1) of the scalar
field φF onΣF can be described[6] by expanding out the inte
rior classical boundary-value solution nearΣF in the form

(2.14)

φ(1) = 1

r

∞∑
�=0

�∑
m=−�

∞∫
−∞

dk ak�mξk�(t, r)
sin(kt)

sin(kT )
Y�m(Ω).

Here, the real quantities{ak�m} characterise the final data.
More generally, for perturbative boundary data for a fi

of any spin, posed onΣF in describing a final state resultin
from black-hole evaporation, we denote by{ask�mP } a set of
analogous ‘Fourier-like’ coefficients, wheres gives the particle
spin,k the frequency,(�,m) the angular quantum numbers, a
P = ±1 the parity (fors �= 0). For massless perturbations
spins s = 0,1,2 [2,3,5–7,10,11], we found that the quantum
amplitude or wave functional is of semi-classical form, be
given by

(2.15)Ψ
[{ask�mP };T ] = N exp

(
iSclass

[{ask�mP };T ])
,

where the pre-factorN depends only onT . Here,Sclassdenotes
the (second-variation) action of the classical infilling soluti
as a functional of the boundary data. For simplicity, we den
the collectionask�mP of indices byj . Further, we writeMI for
the total (time-independent) ADM (Arnowitt–Deser–Misne
mass of the ‘space–time’, as measured at spatial infinity[23].
The ADM massMI , which is the limit at large radius of th
variable massm(t, r) of the Vaidya metric, is a functional o
the final field configurations{aj } on ΣF , since it depends o
the full gravitational field which results from classical soluti
of the complexified boundary-value problem.

As was found (for example) in the scalar cases = 0 in [2,3,
6], the classical action is dominated by contributions from
quenciesk with the values

(2.16)k = kn = nπ

T
, n = 1,2,3, . . . .

We also define�kj to be the spacing between neighbour
kj -values:

(2.17)�kj = π

T
.

Following [2,3,5–7,10,11], the classical action functiona
Sclassis found to be a sum over individual ‘harmonics’ labell
by j , which depend on the corresponding indices{skj �mP }
through the quantity|Aj |2, defined by

|Aj |2 = 2(−1)scs

(� − s)!
(� + s)! |zj |2

(2.18)× ∣∣aj + (−1)sP as,−kj �mP

∣∣2.
Here, the coefficientscs for bosonic spinss are given byc0 =
2π , c1 = 1/4, c2 = 1/8. The quantitieszj are the complex
numbers appearing in Eq.(2.13), which arise in solving the adi
abatic radial mode equation(2.11). This leads to the form of th
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quantum amplitude:

(2.19)Ψ
[{Aj };T

] = N̂e− 1
2 iMI T

∏
j

Ψ (Aj ;T ),

whereN̂ also depends only onT .
Taking the classical actionSclassin the form found in[6] for

the scalars = 0 case (for example), one deduces that the w
functional for given boundary data can be written:

Ψ
[{Aj };T

] = N̂e− 1
2 iMI T

∏
j

1

2i sin(kjT )

(2.20)× exp

[
i

2
(�kj )kj |Aj |2 cot(kjT )

]
.

This will be related to the coherent-state description in the
lowing Section3.

3. Coherent states

It is possible to rewrite the quantum amplitude(2.20)with
the help of the Laguerre polynomials[24]. First, we introduce
the associated Laguerre polynomialsL

(m−n)
n (x), defined by

(3.1)L(m−n)
n (x) =

n∑
p=0

(
m

n − p

)
(−x)p

p!
for m � n � 0. The Laguerre polynomialsLn(x) [24] are given
by

(3.2)Ln(x) = L(0)
n (x).

The set{Ln(x)} obeys the completeness relation

(3.3)
∞∑

n=0

e−(x/2)Ln(x)e−(y/2)Ln(y) = δ(x, y).

Writing z = x + iy, consider now the functionLn(|z|2), which
appears in Eq.(3.5) below. Forn > 0, this cannot be written
as a product of two (decoupled) wave functions ofx andy in
an excited state, due to pair correlations[25]. But, in terms of
Hermite polynomialsHp(x) [24], one can write

(3.4)Ln

(
x2 + y2) = (−1)n

22nn!
n∑

p=0

(
n

p

)
H2p(x)H2n−2p(y).

From this, one can further decompose the quantum am
tude(2.20)as

Ψ
[{Aj };T

] = N̂e− 1
2 iMI T e−Σj (�kj )kj |Aj |2/2

(3.5)×
∏
j

∞∑
n=0

e−2iEnT Ln

[
kj (�kj )|Aj |2

]
,

where En = (n + 1
2)kj is the quantum energy of the line

harmonic oscillator. Note also the dependence of the quan
amplitude on|Aj |—it is spherically symmetric.

The Schrödinger-picture wave functions

(3.6)Ψnj (xj , T ) = N
e−(xj /2)e−2iEnT Ln(xj )
π

e

-

i-

m

appear in the wave-function(3.5), with xj = kj (�kj )|Aj |2.
The wave functions(3.6) have a strong connection with th
exact solution of the forced-harmonic-oscillator problem[26],
with Hamiltonian

(3.7)H = p2

2µ
+ 1

2
µω2q2 + qF(t),

whereF(t) denotes an external force,µ the oscillator mass an
ω the oscillator frequency. Assume thatF(t) = 0 for t < t0 and
for t > T , so that the asymptotic states, at early and late timt ,
are free-oscillator states. One can calculate the amplitudeAkm

to make a transition from the free-oscillator state|m〉 (with m

particles) at early timest < t0, to the free-oscillator state|k〉 at
late timest > T . Define the ‘Fourier transform’ of the force:

(3.8)β =
T∫

t0

dt F (t)e−iωt ,

and set

(3.9)z = |β|2
2µω

.

It has been shown[27–29], in the casem � k, that

(3.10)Akm = eiλe−(z/2)

(
k!
m!

) 1
2
(

iβ√
2µω

)m−k

L
(m−k)
k (z),

whereλ is a real phase. This expression also givesAkm for
m � k, sinceAkm = Amk is symmetric.

In the adiabatic limit, in which the forceF(t) changes ex
tremely slowly, one hasz 	 1, and from general consideratio
a state which begins as|k〉 must end up in the same sta
|k〉 after the time-dependent force has been removed. F
Eq.(3.10), one has

(3.11)Akk = eiλe−(z/2)Lk(z).

The corresponding probability that there should be no chan
the number of particles is|Akk|2 = e−z[Lk(z)]2. Apart from the
introduction of mode labelsj denoting the ‘quantum number
{sk�mP }, together with a necessary re-interpretation forz,
these amplitudes are effectively the wave functions(3.5) de-
rived from our boundary-value problem.

One further viewpoint can be brought to bear on Eq.(3.10),
arising from the coherent-state representation. Coherent s
|α〉 can be regarded as displaced vacuum states; that is[15]

(3.12)|α〉 = D(α)|0〉,
where

(3.13)D(α) = exp
(
αa† − α∗a

)
is a unitary displacement operator, obeying

(3.14)D†(α) = D−1(α) = D(−α),

and where the states|α〉 are eigenstates of the annihilation o
eratora with complex eigenvalueα. Among quantum states fo
the harmonic oscillator, they are the closest to classical st
in that they attain the minimum demanded by the uncerta
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principle. Coherent states form an over-complete set, and
not orthogonal. In terms of the Fock-number eigenstates

(3.15)|n〉 = (a†)n√
n! |0〉,

one has[29]

(3.16)|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉.

The coherent state labelled byα = 0 is the ground state of th
oscillator. If, for example, the system started in a vacuum s
the amplitude to find it subsequently in a coherent state|α〉 is

(3.17)〈0|α〉 = 〈0|D(α)|0〉 = e−|α|2/2,

up to a phase.
To make complete contact with the amplitude(3.10), using

coherent-state methods, we note that, in terms of the disp
ment operatorsD(ξ):

〈m|D(ξ)|α〉
(3.18)= 1√

m! (ξ + α)m exp

[
−1

2

(|α|2 + |ξ |2 + 2ξ∗α
)]

,

and

(3.19)〈m|D(ξ)|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! 〈m|D(ξ)|n〉.

On equating these, one finds that

(1+ y)me−y|ξ |2

(3.20)= e|ξ |2/2
∞∑

n=0

√
m!
n! ξn−myn〈m|D(ξ)|n〉.

But, from the generating function for the associated Lagu
polynomials[25],

(3.21)(1+ y)me−yx =
∞∑

n=0

L(m−n)
n (x)yn, |y| < 1,

one deduces that the matrix element between initial and
states is

(3.22)〈m|D(ξ)|n〉 =
(

n!
m!

) 1
2

ξm−ne−|ξ |2/2L(m−n)
n

(|ξ |2),
which agrees with Eq.(3.10), up to an unimportant phase facto

4. Generalised coherent states

These amplitudes can also be interpreted in terms of ge
alised coherent states of the harmonic oscillator[28]. Define:

(4.1)|n,α〉 = e−iEntD
(
α(t)

)|n〉.
Then, in the Fock representation,

(4.2)|n,α〉 =
∞∑

m=0

〈m|D(
α(0)

)|n〉|m〉e−iEmt .
re

,

e-

e

l

r-

For generalised coherent states, the ground state(n = 0) is a co-
herent state and not a vacuum state. Generalised coherent
are to the coherent states what the Fock states|n〉 are to the vac-
uum state, that is, excited coherent states. In addition, den
by I the identity operator, one finds that[27]:

(4.3)I = 1

π

∫
d2α |n,α〉〈n,α|,

(4.4)〈n,β|n,α〉 = Ln

(|α − β|2)eβ∗α− 1
2 (|α|2+|β|2),

(4.5)

〈n,β|ψ〉 = e−|β|2/2

π

∫
d2α Ln

(|α − β|2)eβ∗αe−|α|2/2〈n,α|ψ〉,

for an arbitrary state|ψ〉, with the definition:

(4.6)
∫

d2α =
∫

d
[
Re(α)

]
d
[
Im(α)

]
.

In particular, from Eq.(4.4)with β = 0, one has

(4.7)〈n,0|n,α〉 ≡ 〈n|n,α〉 = e−|α|2/2 Ln

(|α|2),
again giving Eq.(3.6)up to a phase. The initial state should
seen not as a vacuum state, but as a Fock state, while the
state should be seen as a generalised coherent state.

As shown by Hollenhorst[30], the amplitudes of Eq.(3.22)
have yet a further interpretation: they are the matrix elem
for a transition from state|k〉 to state|m〉 under the influence o
a linearised gravitational wave, with the forceF(t) proportional
to the Riemann curvature-tensor componentRtxtx(t):

(4.8)F(t) = µ�Rxtxt (t) = −1

2
µ�(∂t )

2hT T
xx ,

where� is the distance between two particles along thex-axis,
each being of mass(µ/2), whilehT T

xx is the transverse-tracele
gravitational-wave component of the metric[23], andx is the
change in the separation of the masses.

In the context of black-hole evaporation, one expects tha
role of the force is played by the time-dependent backgro
space–time—which approximates a Vaidya space–time in
high-frequency limit at late times[4,8,18,19].

An important point which we should mention is that, u
der the influence of a time-dependent force, an initial vacu
state transforms into a coherent state. Below, we discuss
by changing a phase parameter of the perturbations ap
ing in their frequencies (parametric amplification), an init
vacuum state transforms into a squeezed vacuum state.
phase is not an oscillator phase, but a small angle,δ, through
which the timeT at infinity is rotated into the lower comple
plane.

5. Squeezed-state formalism

In this section and in the following Section6, we shall see
how, by rotating the asymptotic Lorentzian timeT into the com-
plex plane, and in the case of spherically-symmetric initial m
ter and gravitational fields, one obtains a quantum-mecha
highly-squeezed-state interpretation for the final state in bl
hole evaporation, in the limit of an infinitesimal rotation ang
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Grishchuk and Sidorov[17] were the first to formulate par
ticle creation in strong gravitational fields explicitly in terms
squeezed states, although the formalism does appear in
er’s original paper on cosmological particle production[31]. In
[17], it was shown that relic gravitons (as well as other per
bations), created from zero-point quantum fluctuations as
universe evolves, should now be in a strongly squeezed s
Squeezing is just the quantum process corresponding to
metric amplification.

Black-hole radiation in the squeezed-state representa
was first discussed in[17]. The ‘squeeze parameter’rj (see be-
low) was there related to the frequencyωj and the black-hole
massM through

(5.1)tanh(rj ) = exp(−4πMωj ).

In this language, the vacuum quantum state in a black-
space–time for each mode is a two-mode squeezed vac
However, our approach to squeezed states in black-hole ev
ration is new; arising from a two-surface boundary-value pr
lem and Feynman’s+iε prescription[1]. We now give a brief
account of quantum-mechanical squeezed states.

A general one-mode squeezed state (or squeezed coh
state) is defined[16] as

(5.2)|α, z〉 = D(γ )S(r,φ)|0〉 = D(γ )S(z)|0〉.
Here,D(γ ) is the single-mode displacement operator, and

(5.3)S(r,φ) ≡ S(z) = exp

(
1

2

(
za2 − z∗a†2))

in terms of annihilation and creation operatorsa anda†, respec-
tively, together with the relation

(5.4)z = re−2iφ,

gives the unitary squeezing operator for|α, z〉, obeying

(5.5)S†(z)S(z) = S(z)S†(z) = 1,

with γ given by

(5.6)γ = α coshr + α∗e−2iφ sinhr.

The state Eq.(5.2) is a Gaussian wave-packet, displaced fr
the origin in position and momentum space. While the (re
squeezing parameterr (0 � r < ∞) determines the magnitud
of the squeezing, the squeezing angleφ (|φ| < π/2) gives the
distribution of the squeezing between conjugate variables.
squeezed vacuum state occurs whenα = 0:

(5.7)|z〉 ≡ |0, z〉 = S(z)|0〉.
The limit of high squeezing occurs whenr � 1, where the state
|z〉 is highly localised in momentum space.

Single-mode squeezed operators do not conserve mo
tum, since they describe the creation of particle pairs with
mentumk. Two-mode squeezed operators, however, desc
the creation and annihilation of two particles (waves) with eq
and opposite momenta. A two-mode squeeze operator ha
form [32]

(5.8)S(r,φ) = exp
[
r
(
e−2iφa+a− − e2iφa

†
+a

†
−
)]

,

rk-

-
e
te.
a-

n

le
m.
o-
-

ent

)

e

n-
-
e
l
he

wherea± anda
†
± are annihilation and creation operators for

two modes, respectively.
Consider two conjugate operatorsp̂ and q̂, with variances

�p̂ and �q̂. In the squeezed-state formalism, one may c
struct states such that�p̂ and�q̂ are equal, taking the min
imum value possible. The name ‘squeezed’ refers to the
that the variance of one variable in a conjugate pair can
below the minimum allowed by the uncertainty principle (t
squeezed variable), while the variance of the conjugate
able can exceed the minimum value allowed (the superfluct
variable) [25,33,34]. The superfluctuant variable is amplifie
by the squeezing process, and so becomes possible to ob
macroscopically, while the subfluctuant variable is squee
and becomes unobservable. In particle production, whethe
black holes or in cosmology, the number operator is a su
fluctuant variable, while the phase is squeezed.

6. Analytic continuation and the large-squeezing limit

We shall see here for the black-hole evaporation prob
that, when one rotates the time-separationT at infinity: T →
|T |exp(−iδ) into the complex by a very small angleδ > 0, one
arrives at a very highly-squeezed quantum state. There
information-loss paradox associated with the relic Hawking
diation, as such a state is a pure state. It is also important to
that we do not take the|T | → ∞ limit. However, one must un
derstand that the observation time at infinity by far exceeds
dynamical collapse time-scale, which is of orderπMI [23]. We
now repeat Eq.(2.19):

(6.1)Ψ
[{Aj };T

] = N̂e− 1
2 iMI T

∏
j

Ψ (Aj ;T ),

and then define

Φ
[{Aj };T

]
= Ne− 1

2 iMI T
∏
j

2i sin(kjT )Ψ (Aj ;T )

≡ Ne− 1
2 iMI T

∏
j

exp

[
i

2
(�kj )kj |Aj |2 cot(kjT )

]

(6.2)= N exp
(
iS

(2)
class

[{Aj };T
])

.

We further define the functionsφj (|T |, δ) andrj (|T |, δ) by

(6.3)φj

(|T |, δ) = −kj |T |cosδ,

(6.4)tanhrj
(|T |, δ) = exp

(−2kj |T |sinδ
)
,

whence

(6.5)exp(−2rj ) = tanh
(
kj |T |sinδ

)
.

From Eqs.(6.3)–(6.5), one can rewrite Eq.(6.2) in the form

Φ
[{Aj }; |T |, δ]
= N̂e− 1

2 iMI |T |cosδe− 1
2MI |T |sinδ

(6.6)×
∏
j

exp

[
−1

2
(�kj )kj

(
1+ e2iφj tanhrj
1− e2iφj tanhrj

)
|Aj |2

]
.
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On comparing with Section5, we recognise Eq.(6.6) as
the coordinate-space representation of a quantum-mecha
squeezed state[35,36], with rj (|T |, δ) the squeeze param
ter and φj (|T |, δ) the squeeze angle. The evolution of t
squeezed state is taken into account by the|T |-dependence inrj
and inφj , which are in general both complicated functions
time.

We now define

εj = kj |T |sinδ,

(6.7)f
(
kj , εj , |T |) = 1+ sin2(kj |T |)

sinh2 εj

.

Then
∣∣Φ[{Aj }; |T |, δ]∣∣2

= |N |2e−MI |T |sinδ

(6.8)×
∏
j

exp

[ −cothεj

f (kj , εj , |T |) (�kj )kj |Aj |2
]
,

and, from Eqs.(6.5), (6.7):

(6.9)εj � e−2rj , εj 	 1,

corresponding torj � 1, which is the limit of high squeezing
We discuss the form of the normalisation in another paper[9].

Eq. (6.8) describes a Gaussian non-stationary proces
which the variance is an oscillatory function of time. Rath
than dealing with travelling waves, one now has stand
bosonic waves, where the amplitudes for left- and rig
moving waves are large and almost equal—this is simila
the inflationary-cosmology scenario[17]. One consequence o
the high-squeezing behaviour is that the variance for the am
tudes{xj } is large, so that there are large statistical deviati
of the observable power spectrum from its expected value.
is just a manifestation of the uncertainty principle.

In the squeezed-state formalism, the high-squeezing
rj � 1 may be regarded as the classical limit. For exam
in this sense, in the case of black-hole evaporation, the
nal state of the remnant particle flux becomes more clas
(more WKB) in the limit δ → 0. In this limit, one can ef-
fectively consider the final perturbations as being represe
by a classical probability distribution[17,33,37]. As in the
inflationary scenario in cosmology, the perturbations on
spherically-symmetric black-hole background space–time
quantum-mechanical origin, cannot be distinguished from c
sical stochastic perturbations, without the need for an envi
ment for decoherence. There is also a correspondence be
the initial conditions for the perturbations in the black hole a
in the cosmological cases. In cosmology, the assumption is
at some early ‘time’ just prior to inflation, the modes are in th
adiabatic ground state. A similar qualitative statement can
made in the black-hole example, provided that the pre-colla
initial data were diffuse, slowly-moving and spherically sy
metric.

One further consequence follows, provided thatεj is small
(as above). Then, one finds for the probability distribut
al

n

-

i-
s
is

it
,
-
al

d

e
f
-
-
en

t,

e
e

Eq.(6.8) that, asδ → 0+,

∣∣Φ[{Aj }; |T |, δ]∣∣2

(6.10)∼ |N |2
∏

s�mP

∞∏
n=1

exp
[−(�ωn)ωn|Asn�mP |2],

where we have used the approximation sinhεj ∼ εj for small
εj , and the identities

δ(x) = 1

π
lim
ε→0

ε

(ε2 + x2)
,

and

δ
[
f (x)

] =
∑

i

δ(x − xi)

|f ′(xi)| ,

wherexi are zeros off (x) andωn = nπ/|T |, �ωn = (ωn+1 −
ωn). We have also used the fact thatkj → 0 and thatkj |Aj |2 →
0 askj → 0. In practice, the product overn should be cut off a
some largenmax, such thatωnmax = MI .

Further investigation of the derivation of Eq.(6.10)indicates
that, in the limit of high squeezing, the random variableφj

associated with the final state is squeezed to discrete va
independently of the quantum numbers{s�mP } [9]. Note that
it is only the squeeze phases{φj } of the (standing-wave) per
turbations which are fixed and correlated in the high-squee
limit.

For comparison, in inflationary cosmology, the oscillat
phases of standing waves have fixed values, giving ris
zeros in the power spectrum, which are characteristic of
CMBR. The power spectrum of cosmological perturbation
the present universe is not a smooth function of frequency.
standing-wave pattern, due to squeezing, induces oscilla
in the power spectrum. This in turn produces Sakharov o
lations [37,38], due to metric and scalar perturbations in
distribution of higher-order multipoles of the angular corre
tion function for the temperature anisotropies[21,39] in the
CMBR, for all perturbations at a given time whose wavelen
is comparable with or greater than the Hubble radius define
that time. That is, the peaks and troughs of the angular po
spectrum have a close relationship with the maxima and m
ima of the metric power spectrum. For long wavelengths,
power spectrum does become smoother.

7. Conclusion

In this Letter, we have illustrated many aspects of the qu
tum boundary-value formulation, for linearised bosonic fie
(spinss = 0,1,2) propagating in the space–time of an ev
orating black hole. When the Lorentzian proper-time sep
tion T between the initial and final space-like hypersurfac
as measured at spatial infinity, is deformed into the lower c
plex T -plane, and when the perturbations are initially we
one obtains a quantum-mechanical squeezed-state forma
The large-squeezing limit is equivalent to the WKB limit, co
responding to an infinitesimal angleδ 	 1 of rotation ofT into
the lower-half complex plane.
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Since the final squeezed state is a pure state, there
information-loss paradox as a result of the Feynman+iε pre-
scription we have adopted. Our complex approach is new
differs from Grishchuk’s original application of squeezed sta
to black holes. However, as in the cosmological scenario, s
bosonic perturbations on the black-hole background can b
garded as a stochastic collection of standing waves, rather
as traveling waves, in the high-squeezing limit. This leads to
prediction of peaks in the power spectrum of the relic bla
hole radiation, analogous to the Sakharov oscillations in
CMBR.
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