45 research outputs found

    Assessment of Aglycones Isoflavone Profiling of Staple Indian Grain Flours and Soybean Sprout-Flour

    Get PDF
    In the present study, investigation of fourteen traditional and most commonly used Indian staple grain flour types (viz. wheat, white rice, processed little millet, maize, all-purpose/refined wheat flour, chickpea flour, toasted gram flour, little millet, quinoa, soybean, white millet, pearl millet, semolina/cream of wheat and finger millet) was undertaken for the assessment of 3 major bioactive aglycone forms of isoflavone (IF): daidzein (DI), glycitein (GY) and genistein (GN), with a special interest on the effect of sprouting on total and individual IF components. The obtained results showed that the content and composition of total IF were negligible among all the investigated flours except for soybean, wherein detectable total (227 mg kg-1) and individual IF (45, 129 and 53 mg kg-1 for DI, GY and GN respectively) components were observed. From soybean mature seeds to sprouts formation with ~80% germination rate at a pilot-scale, a 31% increase in total IF (298 mg kg-1), characterised by an individual and respective increment of 30% (58 mg kg-1), 25% (161 mg kg-1) and 48% (78 mg kg-1) in corresponding DI, GY and GN components, was observed. The current results demonstrated that for the Indian scenario, contribution of aforementioned grains, other than soybean in daily dietary intake of IF is negligible and sprouting represents an effective way to enhance the endogenous IF content

    GA3 mediated enhanced transcriptional rate and mRNA stability of 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (NtHMGR1) in Nicotiana tabacum L.

    Get PDF
    Our present study evaluated the underlying molecular-mechanism(s) associated with the observed enhanced transcript levels and concomitant functional activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (NtHMGR1), a rate-limiting enzyme of cytosolic mevalonate (MVA) pathway of terpenoids biosynthesis, by gibberellin A3 (GA3) treatment in model cultivated tobacco, Nicotiana tabacum L. Based on the transcription run-on and cordycepin chase assays, our results demonstrated that tobacco seeds-priming with GA3 causes a relative and significantly enhanced transcriptional rate and mRNA stability of NtHMGR1. Taken together, our study established that GA3 mediated transcriptional and post-transcriptional regulatory control as one of the mechanisms for the observed enhanced transcript-levels and consequently enhanced functional activity of NtHMGR1

    From Coherent Modes to Turbulence and Granulation of Trapped Gases

    Full text link
    The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose-Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.Comment: Latex file, 25 pages, 4 figure

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Mass spectrum of the temperature dependent Bethe-Salpeter equation for composites of quarks with a Coulomb plus a linear kernel

    No full text
    We assume that high-energy nucleus-nucleus interactions give rise to a hot and dense plasma comprising quarks and gluons due to successive nucleon-nucleon collisions. We treat this plasma as an ideal fluid at temperature TT prior to its eventual particlization, and attempt a microscopic description of meson-formation by using finite temperature propagators for qq and qˉ\bar q in a Bethe-Salpeter equation with a Coulomb plus a linear kernel. The equation thus obtained is reduced to a Schrodinger-like equation which then yields, for 0<T<860 < T < 86 MeV, the bound state masses for different states of bbˉb\bar b and ccˉc\bar c, which are in agreement with the experimental values for these states. The effects of the temperature of the plasma on the meson masses show up only when the temperature exceeds 86 MeV, pointing to the probable reason for the successes of the earlier models which did not explicitly take the temperature of the plasma into account

    Quarkonium mass spectra from the temperature dependent Bethe-Salpeter equation with logarithmic and Coulomb plus square-root kernels

    No full text
    The study of meson formation in quark-gluon plasma using a temperature-dependent Bethe-Salpeter formalism presented earlier, is now extended to a logarithmic and a combination of a Coulomb plus a square-root kernel. We are able to get good fits to the meson masses with both kinds of kernels and our present results are qualitatively similar to those obtained for the Coulomb plus a linear kernel

    Recovery and reutilisation of copper from metal hydroxide sludges

    No full text
    Sludges generated from electroplating waste-waters contain high concentrations of metals. Studies have confirmed that the concentrations of several metals in the sludge exceed that of those found in natural ores. A very good example is in the case of copper. The natural copper ore contains less than 1 of copper, whereas copper precipitate sludges from the electroplating industry may have an average of 5-10 of copper. Thus, they are one of the largest sources of untapped metal-bearing secondary materials amenable to metals recovery. In Malaysia, most of these metal-bearing sludges are disposed in specially engineering landfills, as many of them do not have the proper incentives and recovery technology. Very less metal recovery is being carried out, and there seems to be a huge waste in these valuable metal resources. With regards to that, an experimental study was carried out to develop and optimise a method of copper recovery from metal hydroxide sludges. Sludge samples containing high concentrations of copper were obtained from a local electroplating plant for the study. A procedure based upon mineral acid leaching or solubilisation was carried out. Two different types of acids, hydrochloric acid (HCl) and sulphuric acid (H2SO4) were used to compare the extractability of copper. Experiments were conducted at various acid concentrations and temperatures to determine the maximum amount of copper recoverable. From the results obtained, maximum copper (95) was solubilised using H2SO4 of 10 M at temperature 110 degrees C, for a leaching period of 4 h. These copper concentrated solutions were then heated and crystallised to form CuSO4 crystals. These crystals were then washed with water and purified. They can be then further treated and reutilised in the metallurgical industry. This study introduces a sustainable method of utilising an electroplating sludge containing valuable metals
    corecore