178 research outputs found

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe

    Ten essentials for action-oriented and second order energy transitions, transformations and climate change research

    No full text
    The most critical question for climate research is no longer about the problem, but about how to facilitate the transformative changes necessary to avoid catastrophic climate-induced change. Addressing this question, however, will require massive upscaling of research that can rapidly enhance learning about transformations. Ten essentials for guiding action-oriented transformation and energy research are therefore presented, framed in relation to second-order science. They include: (1) Focus on transformations to low-carbon, resilient living; (2) Focus on solution processes; (3) Focus on ‘how to’ practical knowledge; (4) Approach research as occurring from within the system being intervened; (5) Work with normative aspects; (6) Seek to transcend current thinking; (7) Take a multi-faceted approach to understand and shape change; (8) Acknowledge the value of alternative roles of researchers; (9) Encourage second-order experimentation; and (10) Be reflexive. Joint application of the essentials would create highly adaptive, reflexive, collaborative and impact-oriented research able to enhance capacity to respond to the climate challenge. At present, however, the practice of such approaches is limited and constrained by dominance of other approaches. For wider transformations to low carbon living and energy systems to occur, transformations will therefore also be needed in the way in which knowledge is produced and used

    Transforming knowledge systems for life on Earth : Visions of future systems and how to get there

    Get PDF
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.Peer reviewe

    Transforming knowledge systems for life on Earth: Visions of future systems and how to get there

    No full text
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent

    Trends and outcome of neoadjuvant treatment for rectal cancer: A retrospective analysis and critical assessment of a 10-year prospective national registry on behalf of the Spanish Rectal Cancer Project

    No full text

    Delayed colorectal cancer care during covid-19 pandemic (decor-19). Global perspective from an international survey

    No full text
    Background The widespread nature of coronavirus disease 2019 (COVID-19) has been unprecedented. We sought to analyze its global impact with a survey on colorectal cancer (CRC) care during the pandemic. Methods The impact of COVID-19 on preoperative assessment, elective surgery, and postoperative management of CRC patients was explored by a 35-item survey, which was distributed worldwide to members of surgical societies with an interest in CRC care. Respondents were divided into two comparator groups: 1) ‘delay’ group: CRC care affected by the pandemic; 2) ‘no delay’ group: unaltered CRC practice. Results A total of 1,051 respondents from 84 countries completed the survey. No substantial differences in demographics were found between the ‘delay’ (745, 70.9%) and ‘no delay’ (306, 29.1%) groups. Suspension of multidisciplinary team meetings, staff members quarantined or relocated to COVID-19 units, units fully dedicated to COVID-19 care, personal protective equipment not readily available were factors significantly associated to delays in endoscopy, radiology, surgery, histopathology and prolonged chemoradiation therapy-to-surgery intervals. In the ‘delay’ group, 48.9% of respondents reported a change in the initial surgical plan and 26.3% reported a shift from elective to urgent operations. Recovery of CRC care was associated with the status of the outbreak. Practicing in COVID-free units, no change in operative slots and staff members not relocated to COVID-19 units were statistically associated with unaltered CRC care in the ‘no delay’ group, while the geographical distribution was not. Conclusions Global changes in diagnostic and therapeutic CRC practices were evident. Changes were associated with differences in health-care delivery systems, hospital’s preparedness, resources availability, and local COVID-19 prevalence rather than geographical factors. Strategic planning is required to optimize CRC care
    corecore