59 research outputs found

    NGC300 X-1 and IC10 X-1: a new breed of black hole binary?

    Get PDF
    [ABRIDGED] IC10 X-1 has recently been confirmed as a black hole (BH) + Wolf-Rayet (WR) X-ray binary, and NGC300 X-1 is thought to be. IC10 X-1 and NGC300 X-1 have similar X-ray properties, with luminosities ~10^38 erg/s, and orbital periods ~30 hr. We investigate similarities between these two, as well as differences between them and the known Galactic BH binary systems. We have examined XMM-Newton observations of NGC300 X-1 and IC10 X-1. We extracted lightcurves and spectra; power density spectra (PDS) were constructed from the lightcurves, and the X-ray emission spectra were modeled. Each source exhibits PDS that are characteristic of disc-accreting X-ray binaries (XBs) in the high state. In this state, Galactic XBs with known BH primaries have soft, thermal emission; however the emission spectra of our targets are predominantly non-thermal. Furthermore, the Observation 1 spectrum of NGC300 X-1 is strikingly similar to that of IC10 X-1. The remarkable similarity between the behaviour of NGC300 X-1 in Observation 1 and that of IC10 X-1 lends strong evidence for NGC300 X-1 being a (BH+WR) binary. The unusual spectra of NGC300 X-1 and IC10 X-1 may be due to these systems existing in a persistently high state, whereas all known BH LMXBs are transient. BH XBs in a persistent high state could retain their corona, and hence exhibit a large non-thermal component. LMC X-1 is a BH XB that has only been observed in the high state, and its spectrum is remarkably similar to those of our targets. We therefore classify NGC300 X-1, IC10 X-1 and perhaps LMC X-1 as a new breed of BH XB, defined by their persistently high accretion rates and consequent stable disc configuration and corona. This scenario may also explain the lack of ultraluminous X-ray sources in the canonical soft state.Comment: Approved for publication in A&A. 8 pages, 5 figure

    Soft X-ray and FUV observations of Nova Her 2021 (V1674 Her) with AstroSat

    Get PDF
    Nova Her 2021 or V1674 Her was one of the fastest novae to be observed so far. We report here the results from our timing and spectral studies of the source observed at multiple epochs with AstroSat. We report the detection of a periodicity in the source in soft X-rays at a period of 501.4–501.5 s which was detected with high significance after the peak of the super-soft phase, but was not detected in the far ultraviolet (FUV) band of AstroSat. The shape of the phase-folded X-ray light curves has varied significantly as the nova evolved. The phase-resolved spectral studies reveal the likely presence of various absorption features in the soft X-ray band of 0.5–2 keV, and suggest that the optical depth of these absorption features may be marginally dependent on the pulse phase. Strong emission lines from Si, N, and O are detected in the FUV, and their strength declined continuously as the nova evolved and went through a bright X-ray state.Fil: Bhargava, Yash. No especifĂ­ca;Fil: Dewangan, Gulab Chand. International Centre Of Theoretical Science. Tata Institute Of Fundamental Research; EspañaFil: Anupama, G. C.. No especifĂ­ca;Fil: Kamath, U. S.. No especifĂ­ca;Fil: Sonith, L. S.. No especifĂ­ca;Fil: Pal Singh, Kulinder. ndian Institute of Science Education and Research Mohali; IndiaFil: Drake, J. J.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Beardmore, A. University of Leicester; Reino UnidoFil: Luna, Gerardo Juan Manuel. Secretaria de Investigacion ; Universidad Nacional de Hurlingham; . Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Orio, M.. Istituto Nazionale di Astrofisica; ItaliaFil: Page, K. L.. University of Leicester; Reino Unid

    VISIR/VLT mid-infrared imaging of Seyfert nuclei: Nuclear dust emission and the Seyfert-2 dichotomy

    Full text link
    Half of the Seyfert-2 galaxies escaped detection of broad lines in their polarised spectra observed so far. Some authors have suspected that these non-HBLRs contain real Sy2 nuclei without intrinsic broad line region hidden behind a dust torus. If this were true, then their nuclear structure would fundamentally differ from that of Sy2s with polarised broad lines: in particular, they would not be explained by orientation-based AGN unification. Further arguments for two physically different Sy2 populations have been derived from the warm and cool IRAS F25/F60 ratios. These ratios, however, refer to the entire host galaxies and are unsuitable to conclusively establish the absence of a nuclear dust torus. Instead, a study of the Seyfert-2 dichotomy should be performed on the basis of nuclear properties only. Here we present the first comparison between [OIII] 5007A and mid-infrared imaging at matching spatial resolution. Exploring the Seyfert-2 dichotomy we find that the distributions of nuclear mid-infrared/[OIII] luminosity ratios are indistinguishable for Sy1s and Sy2s with and without detected polarised broad lines and irrespective of having warm or cool IRAS F25/F60 ratios. We find no evidence for the existence of a population of real Sy2s with a deficit of nuclear dust emission. Our results suggest 1) that all Seyfert nuclei possess the same physical structure including the putative dust torus and 2) that the cool IRAS colours are caused by a low contrast of AGN to host galaxy. Then the Seyfert-2 dichotomy is explained in part by unification of non-HBLRs with narrow-line Sy1s and to a larger rate by observational biases caused by a low AGN/host contrast and/or an unfavourable scattering geometry.Comment: 11 pages, 6 figures, accepted by A&

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Spatial distribution of star formation related to ionized regions throughout the inner Galactic plane

    Get PDF
    We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1360 bubble structures throughout the Galactic plane and their local environments. The compilation of ~70 000 star-forming sources, found in the proximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects (Class II YSO candidates) are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 H ii regions for which kinematic distances and radio continuum flux measurements were available. We detect approximately 80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate the clump formation efficiency (CFE) of Hi-GAL clumps in the direction of the shell of the bubbles to be ~15%, around twice the value of the CFE in fields that are not affected by feedback effects. We find that the higher values of CFE are mostly due to the higher CFE of protostellar clumps, in particular in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the (H ii) bubble expansion. Furthermore, we also find a higher fraction of massive YSOs (MYSOs) in bubbles at the early stages of expansion ( < 2 Myr) than older bubbles. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble expansion in order to explain the formation of MYSOs in the youngest H ii regions ( < 1 Myr), as supported by numerical simulations. Approximately 23% of the Hi-GAL clumps are found located in the direction of a bubble, with 15% for prestellar clumps and 41% for protostellar clumps. We argue that the high fraction of protostellar clumps may be due to the acceleration of the star-formation process cause by the feedback of the (Hii) bubbles. © ESO, 2017

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Experimental study of spin-exchange effects in elastic and ionizing collisions of polarized electrons with polarized hydrogen atoms

    Full text link
    • 

    corecore