57 research outputs found

    The Effect of Lockdown Period during the COVID-19 Pandemic on Air Quality in Sydney Region, Australia.

    Full text link
    In early 2020 from April to early June, the metropolitan area of Sydney as well as the rest of New South Wales (NSW, Australia) experienced a period of lockdown to prevent the spread of COVID-19 virus in the community. The effect of reducing anthropogenic activities including transportation had an impact on the urban environment in terms of air quality which is shown to have improved for a number of pollutants, such as Nitrogen Dioxides (NO2) and Carbon Monoxide (CO), based on monitoring data on the ground and from a satellite. In addition to primary pollutants CO and NOx emitted from mobile sources, PM2.5 (primary and secondary) and secondary Ozone (O3) during the lockdown period will also be analyzed using both statistical methods on air quality data and the modelling method with emission and meteorological data input to an air quality model. By estimating the decrease in traffic volume in the Sydney region, the corresponding decrease in emission input to the Weather Research and Forecasting—Community Multiscale Air Quality Modelling System (WRF-CMAQ) air quality model is then used to estimate the effect of lockdown on the air quality especially CO, NO2, O3, and PM2.5 in the Greater Metropolitan Region (GMR) of Sydney. The results from both statistical and modelling methods show that NO2, CO, and PM2.5 levels decreased during the lockdown, but O3 instead increased. However, the change in the concentration levels are small considering the large reduction of ~30% in traffic volum

    A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

    Get PDF
    To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial.

    Get PDF
    Mortality and disability following ischemic stroke (IS) remains unacceptably high with respect to the conventional therapies. This study tested the effect of erythropoietin (EPO) on long-term neurological outcome in patients after acute IS. This study aimed to evaluate the safety and efficacy of two consecutive doses of EPO (5,000 IU/dose, subcutaneously administered at 48 hours and 72 hours after acute IS) on improving the 90-day combined endpoint of recurrent stroke or death that has been previously reported. A secondary objective was to evaluate the long-term (that is, five years) outcome of patients who received EPO.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Analysis of microbial sequences in plasma cell-free DNA for early-onset breast cancer patients and healthy females

    Get PDF
    Abstract Background Cell-free circulating DNA (cfDNA) is becoming a useful biopsy for noninvasive diagnosis of diseases. Microbial sequences in plasma cfDNA may provide important information to improve prognosis and treatment. We have developed a stringent method to identify microbial species via microbial cfDNA in the blood plasma of early-onset breast cancer (EOBC) patients and healthy females. Empirically, microbe-originated sequence reads were identified by mapping non-human PE reads in cfDNA libraries to microbial databases. Those mapped concordantly to unique microbial species were assembled into contigs, which were subsequently aligned to the same databases. Microbial species uniquely aligned were identified and compared across all individuals on MCRPM (Microbial CfDNA Reads Per Million quality PE reads) basis. Results The predominant microbial cfDNAs in all plasma samples examined are originated from bacteria and these bacteria were limited to only a few genera. Among those, Acinetobacter johnsonii XBB1 and low levels of Mycobacterium spp. were commonly found in all healthy females, but also present in an EOBC patient. Compared to those in healthy counterparts, bacterial species in EOBC patients are more diverse and more likely to present at high levels. Among these three EOBC patients tested, a patient who has record high titer (2,724 MCRPM) of Pseudomonas mendocina together with 8.82 MCRPM of Pannonibacter phragmitetus has passed away; another patient infected by multiple Sphingomonas species remains alive; while the third patient who has similar microbial species (Acinetobacter johnsonii XBB1) commonly seen in normal controls is having a normal life. Conclusions Our preliminary data on the profiles of microbial cfDNA sequences suggested that it may have some prognostic value in cancer patients. Validation in larger number of patients is warranted
    corecore