49 research outputs found

    A Volumetric Method for Quantifying Atherosclerosis in Mice by Using MicroCT: Comparison to En Face

    Get PDF
    Precise quantification of atherosclerotic plaque in preclinical models of atherosclerosis requires the volumetric assessment of the lesion(s) while maintaining in situ architecture. Here we use micro-computed tomography (microCT) to detect ex vivo aortic plaque established in three dyslipidemic mouse models of atherosclerosis. All three models lack the low-density lipoprotein receptor (Ldlr−/−), each differing in plaque severity, allowing the evaluation of different plaque volumes using microCT technology. From clearly identified lesions in the thoracic aorta from each model, we were able to determine plaque volume (0.04–3.1 mm3), intimal surface area (0.5–30 mm2), and maximum plaque (intimal-medial) thickness (0.1–0.7 mm). Further, quantification of aortic volume allowed calculation of vessel occlusion by the plaque. To validate microCT for future preclinical studies, we compared microCT data to intimal surface area (by using en face methodology). Both plaque surface area and plaque volume were in excellent correlation between microCT assessment and en face surface area (r2 = 0.99, p<0.0001 and r2 = 0.95, p<0.0001, respectively). MicroCT also identified internal characteristics of the lipid core and fibrous cap, which were confirmed pathologically as Stary type III-V lesions. These data validate the use of microCT technology to provide a more exact empirical measure of ex vivo plaque volume throughout the entire intact aorta in situ for the quantification of atherosclerosis in preclinical models

    Rotation Speed of the First Stars

    Full text link
    We estimate the rotation speed of Population III (Pop III) stars within a minihalo at z ~ 20 using a smoothed particle hydrodynamics (SPH) simulation, beginning from cosmological initial conditions. We follow the evolution of the primordial gas up to densities of 10^12 cm^-3. Representing the growing hydrostatic cores with accreting sink particles, we measure the velocities and angular momenta of all particles that fall onto these protostellar regions. This allows us to record the angular momentum of the sinks and estimate the rotational velocity of the Pop III stars expected to form within them. The rotation rate has important implications for the evolution of the star, the fate encountered at the end of its life, and the potential for triggering a gamma-ray burst (GRB). We find that there is sufficient angular momentum to yield rapidly rotating stars (> 1000 km s^-1, or near break-up speeds). This indicates that Pop III stars likely experienced strong rotational mixing, impacting their structure and nucleosynthetic yields. A subset of them was also likely to result in hypernova explosions, and possibly GRBs.Comment: 14 pages, 7 figures, accepted for publication in MNRA

    Workshop Report: Container Based Analysis Environments for Research Data Access and Computing

    Get PDF
    Report of the first workshop on Container Based Analysis Environments for Research Data Access and Computing supported by the National Data Service and Data Exploration Lab and held at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign

    Rotation and Internal Structure of Population III Protostars

    Full text link
    We analyze the cosmological simulations performed in the recent work of Greif et al. (2012), which followed the early growth and merger history of Pop III stars while resolving scales as small as 0.05 R_sol. This is the first set of cosmological simulations to self-consistently resolve the rotation and internal structure of Pop III protostars. We find that Pop III stars form under significant rotational support which is maintained for the duration of the simulations. The protostellar surfaces spin from ~50% to nearly 100% of Keplerian rotational velocity. These rotation rates persist after experiencing multiple stellar merger events. In the brief time period simulated (~ 10 yr), the protostars show little indication of convective instability, and their properties furthermore show little correlation with the properties of their host minihaloes. If Pop III protostars within this range of environments generally form with high degrees of rotational support, and if this rotational support is maintained for a sufficient amount of time, this has a number of crucial implications for Pop III evolution and nucleosynthesis, as well as the possibility for Pop III pair-instability supernovae, and the question of whether the first stars produced gamma-ray bursts.Comment: 19 pages, 12 figures, to appear in MNRA

    AAPT Diagnostic Criteria for Chronic Cancer Pain Conditions

    Get PDF
    Chronic cancer pain is a serious complication of malignancy or its treatment. Currently, no comprehensive, universally accepted cancer pain classification system exists. Clarity in classification of common cancer pain syndromes would improve clinical assessment and management. Moreover, an evidence-based taxonomy would enhance cancer pain research efforts by providing consistent diagnostic criteria, ensuring comparability across clinical trials. As part of a collaborative effort between the Analgesic, Anesthetic, and Addiction Clinical Trial Translations Innovations Opportunities and Networks (ACTTION) and the American Pain Society (APS), the ACTTION-APS Pain Taxonomy (AAPT) initiative worked to develop the characteristics of an optimal diagnostic system.59, 65 Following the establishment of these characteristics, a working group consisting of clinicians and clinical and basic scientists with expertise in cancer and cancer-related pain was convened to generate core diagnostic criteria for an illustrative sample of 3 chronic pain syndromes associated with cancer (i.e., bone pain and pancreatic cancer pain as models of pain related to a tumor) or its treatment (i.e., chemotherapy-induced peripheral neuropathy). A systematic review and synthesis was conducted to provide evidence for the dimensions that comprise this cancer pain taxonomy. Future efforts will subject these diagnostic categories and criteria to systematic empirical evaluation of their feasibility, reliability and validity and extension to other cancer-related pain syndromes

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore