89 research outputs found

    Vitamin D supplementation and prevention of cardiovascular disease and cancer in the Finnish Vitamin D Trial-a randomized controlled trial

    Get PDF
    Background: Vitamin D insufficiency is associated with risk of cardiovascular diseases (CVD) and cancer in observational studies, but evidence for benefits with vitamin D supplementation is limited.Objectives: To investigate the effects of vitamin D3 supplementation on CVD and cancer incidence.Design: The study was a 5-year randomized placebo-controlled trial among 2495 male participants ≥ 60 years and post-menopausal female participants ≥ 65 years from a general Finnish population who were free of prior CVD or cancer. The study had three arms: placebo, 1600 IU/day or 3200 IU/day vitamin D3. Follow-up was by annual study questionnaires and national registry data. A representative sub-cohort of 551 participants had more detailed in-person investigations. The primary endpoints were incident major CVD and invasive cancer. Secondary endpoints included the individual components of the primary CVD endpoint (myocardial infarction, stroke, and CVD mortality), site-specific cancers and cancer death.Results: During the follow-up, there were 41 (4.9%), 42 (5.0%) and 36 (4.3%) major CVD events in the placebo, 1600 IU/d (vs. placebo: hazard ratio (HR), 0.97;95% CI, 0.63,1.49; P = 0.89), and 3200 IU/d (HR, 0.84;95% CI, 0.54,1.31; P = 0.44) arms, respectively. Invasive cancer was diagnosed in 41 (4.9%), 48 (5.8%) and 40 (4.8%) participants in the placebo, 1600 IU/d (HR, 1.14;95% CI, 0.75,1.72; P = 0.55), and 3200 IU/d (HR, 0.95;95% CI, 0.61,1.47; P = 0.81) arms, respectively. There were no significant differences in the secondary endpoints or total mortality. In the sub-cohort, the mean (standard deviation) baseline serum 25-hydroxyvitamin D concentration was 75 (18) nmol/L. After 12 months, the concentrations were 73 (18) nmol/L, 100 (21) nmol/L and 120 (22) nmol/L in the placebo, 1600 IU/d and 3200 IU/d arms, respectively.Conclusions: Vitamin D3 supplementation did not lower the incidence of major CVD events or invasive cancer among older adults, possibly due to sufficient vitamin D status in most participants at baseline. Clinical Trial Registry number: ClinicalTrials.gov: NCT01463813, https://clinicaltrials.gov/ct2/show/NCT01463813.</p

    Clustering of cardiovascular risk factors and carotid intima-media thickness : The USE-IMT study

    Get PDF
    Background The relation of a single risk factor with atherosclerosis is established. Clinically we know of risk factor clustering within individuals. Yet, studies into the magnitude of the relation of risk factor clusters with atherosclerosis are limited. Here, we assessed that relation. Methods Individual participant data from 14 cohorts, involving 59,025 individuals were used in this cross-sectional analysis. We made 15 clusters of four risk factors (current smoking, overweight, elevated blood pressure, elevated total cholesterol). Multilevel age and sex adjusted linear regression models were applied to estimate mean differences in common carotid intima-media thickness (CIMT) between clusters using those without any of the four risk factors as reference group. Results Compared to the reference, those with 1, 2, 3 or 4 risk factors had a significantly higher common CIMT: mean difference of 0.026 mm, 0.052 mm, 0.074 mm and 0.114 mm, respectively. These findings were the same in men and in women, and across ethnic groups. Within each risk factor cluster (1, 2, 3 risk factors), groups with elevated blood pressure had the largest CIMT and those with elevated cholesterol the lowest CIMT, a pattern similar for men and women. Conclusion Clusters of risk factors relate to increased common CIMT in a graded manner, similar in men, women and across race-ethnic groups. Some clusters seemed more atherogenic than others. Our findings support the notion that cardiovascular prevention should focus on sets of risk factors rather than individual levels alone, but may prioritize within clusters.Peer reviewe

    Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.

    Get PDF
    One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort

    HFE gene mutations increase the risk of coronary heart disease in women

    Get PDF
    The purpose of the present study is to examine HFE gene mutations in relation to newly diagnosed (incident) coronary heart disease (CHD). In a population-based follow-up study of 7,983 individuals aged 55 years and older, we compared the risk of incident CHD between HFE carriers and non-carriers, overall and stratified by sex and smoking status. HFE mutations were significantly associated with an increased risk of incident CHD in women but not in men (hazard ratio [HR] for women = 1.7, 95% confidence interval [CI] 1.2–2.4 versus HR for men = 0.9, 95% CI 0.7–1.2). This increased CHD risk associated with HFE mutations in women was statistically significant in never smokers (HR = 1.8, 95% CI 1.1–2.8) and current smokers (HR = 3.1, 95% CI 1.4–7.1), but not in former smokers (HR = 1.3, 95% CI 0.7–2.4). HFE mutations are associated with increased risk of incident CHD in women

    Effects of C282Y, H63D, and S65C HFE gene mutations, diet, and life-style factors on iron status in a general Mediterranean population from Tarragona, Spain

    Get PDF
    Mutations in the HFE gene result in iron overload and can produce hereditary hemochromatosis (HH), a disorder of iron metabolism characterized by increased intestinal iron absorption. Dietary quality, alcoholism and other life-style factors can increase the risk of iron overload, especially among genetically at risk populations. Polymorphisms of the HFE gene (C282Y, H63D and S65C) were measured together with serum ferritin (SF), transferrin saturation (TS) and hemoglobin, to measure iron status, in randomly-selected healthy subjects living in the Spanish Mediterranean coast (n = 815; 425 females, 390 males), 18 to 75 years of age. The intake of dietary components that affect iron absorption was calculated from 3-day dietary records. The presence of C282Y/H63D compound heterozygote that had a prevalence of 2.8% in males and 1.2% in females was associated with an elevated TS and SF. No subject was homozygous for C282Y or S65C. The C282Y heterozygote, H63D heterozygote and homozygote and H63D/S65C compound heterozygote genotypes were associated with increased TS relative to the wild type in the general population. These genotypes together with the alcohol and iron intake increase the indicators of iron status, while calcium intake decreases them. We did not observe any affect of the S65C heterozygote genotype on these levels. All the HFE genotypes except for the S65C heterozygote together with the alcohol, iron and calcium intake affect the indicators of iron status. The C282Y/H63D compound heterozygote genotype has the higher phenotypic expression in our Spanish Mediterranean population

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    A century of trends in adult human height

    Get PDF
    corecore