88 research outputs found

    Characterization of platinum lift-off technique

    Get PDF
    In micro electromechanical systems (MEMS) and micro electronic devices there has been a strong demand for the fabrication of electrodes. Platinum (Pt) is a good candidate for this, because it combines some attractive properties: low electrical resistance, high melting point and high chemical stability. However, the latest leads to very difficult for patterning Pt by wet chemical or dry etching. Besides, etching damages the surface making wafer bonding impossible. Lift-off seems to be a solution to this problem. A big problem in using lift-off is that platinum particles or ears may remain at the edges after lift-off. These ears protrude from the surface and may cause electrical shortcuts with an opposite electrode. Some authors reported shortly about a modified lift-off technique to overcome this problem. Before deposition of the metal, a small cavity is etched in the insulator, which is mostly SiO2, thereby breaking the metal during deposition. In this paper the effect of cavity depth and metal thickness on ear forming is investigated. A surface roughness and a resistance of the asdeposited metals are measured. The results of method have been applied successfully for Load Cell sensors in our lab

    Instability, Intermixing and Electronic Structure at the Epitaxial LaAlO3/SrTiO3(001) Heterojunction

    Full text link
    The question of stability against diffusional mixing at the prototypical LaAlO3/SrTiO3(001) interface is explored using a multi-faceted experimental and theoretical approach. We combine analytical methods with a range of sensitivities to elemental concentrations and spatial separations to investigate interfaces grown using on-axis pulsed laser deposition. We also employ computational modeling based on the density function theory as well as classical force fields to explore the energetic stability of a wide variety of intermixed atomic configurations relative to the idealized, atomically abrupt model. Statistical analysis of the calculated energies for the various configurations is used to elucidate the relative thermodynamic stability of intermixed and abrupt configurations. We find that on both experimental and theoretical fronts, the tendency toward intermixing is very strong. We have also measured and calculated key electronic properties such as the presence of electric fields and the value of the valence band discontinuity at the interface. We find no measurable electric field in either the LaAlO3 or SrTiO3, and that the valence band offset is near zero, partitioning the band discontinuity almost entirely to the conduction band edge. Moreover, we find that it is not possible to account for these electronic properties theoretically without including extensive intermixing in our physical model of the interface. The atomic configurations which give the greatest electrostatic stability are those that eliminate the interface dipole by intermixing, calling into question the conventional explanation for conductivity at this interface - electronic reconstruction. Rather, evidence is presented for La indiffusion and doping of the SrTiO3 below the interface as being the cause of the observed conductivity

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Fabrication of nano structures in thin membranes with focused ion beam technology

    Get PDF
    In recent years, Focused Ion Beam (FIB) technology has emerged as an important tool for nanotechnology [V.J. Gadgil, F. Morrissey, Encyclopaedia of Nanoscience and Nanotechnology, vol. 1, American Science Publishers, ISBN: 1-58883-057-8, 2004, p101.]. In this paper, applications of focused ion beam technology to fabrication of nanostructures are presented. The structures are fabricated on free standing silicon nitride membranes. Nanopores are nanometer diameter holes used in bio medical research for high speed DNA sequencing [D.K. Stewart, L.A. Stern, G. Foss, G. Hughes and P. Govil, Proc. SPIE 21, 1990, 1263.]. FIB was used to mill nanopores in the membrane. The pores were further reduced using epitaxial deposition using electron beam, at a controlled rate. A STEM detector was used to monitor the pore in situ. Nanowires can be fabricated using shadow mask technique. The shadow mask for nanowires was fabricated using FIB. The mask was used to produce nanowires. Fabrication method and FIB process parameters for the fabrication are reported. Results of the nanopore fabrication are presented with STEM images. Results of the nanowire fabrication are presented. Various strategies employed to achieve the desired nanostructures are discussed
    corecore