52 research outputs found

    Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess.</p> <p>Methods/design</p> <p>Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease.</p> <p>The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1–84) as the primary endpoint and (2) 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints.</p> <p>Discussion</p> <p>In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism.</p> <p>Trial registration</p> <p>ISRCTN33941607</p

    Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality

    Get PDF
    Aims The purpose of this study was to identify novel genetic variants influencing circulating asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels and to evaluate whether they have a prognostic value on cardiovascular mortality. Methods and results We conducted a genome-wide association study on the methylarginine traits and investigated the predictive value of the new discovered variants on mortality. Our meta-analyses replicated the previously known locus for ADMA levels in DDAH1 (rs997251; P = 1.4 × 10−40), identified two non-synomyous polymorphisms for SDMA levels in AGXT2 (rs37369; P = 1.4 × 10−40 and rs16899974; P = 1.5 × 10−38) and one in SLC25A45 (rs34400381; P = 2.5 × 10−10). We also fine-mapped the AGXT2 locus for further independent association signals. The two non-synonymous AGXT2 variants independently associated with SDMA levels were also significantly related with short-term heart rate variability (HRV) indices in young adults. The major allele (C) of the novel non-synonymous rs16899974 (V498L) variant associated with decreased SDMA levels and an increase in the ratio between the low- and high-frequency spectral components of HRV (P = 0.00047). Furthermore, the SDMA decreasing allele (G) of the non-synomyous SLC25A45 (R285C) variant was associated with a lower resting mean heart rate during the HRV measurements (P = 0.0046), but not with the HRV indices. None of the studied genome-wide significant variants had any major effect on cardiovascular or total mortality in patients referred for coronary angiography. Conclusions AGXT2 has an important role in SDMA metabolism in humans. AGXT2 may additionally have an unanticipated role in the autonomic nervous system regulation of cardiac functio

    Three-dimensional cometary dust coma modelling in the collisionless regime: strengths and weaknesses

    Get PDF
    Inverse coma and tail modelling of comets based on the method developed by Finson & Probstein is commonly used to analyse cometary coma images. Models of this type often contain a large number of assumptions that may not be constrained unless wide temporal or spectral coverage is available and the comets are bright and at relatively small geocentric distance. They are used to predict physical parameters, such as the mass distribution of the dust, but rarely give assessments of the accuracy of the estimate. A three-dimensional cometary dust coma model in the collisionless regime has been developed to allow the effectiveness of such models to constrain dust coma properties to be tested. The model is capable of simulating the coma morphology for the following input parameters: the comet nucleus shape, size, rotation, emission function (including active fraction and jets), grain velocity distribution (and dispersion), size distribution, dust production rate, grain material and light scattering from the cometary dust. Characterization of the model demonstrates that the mass distribution cannot be well constrained as is often assumed; the cumulative mass distribution index ? can only be constrained to within ±0.15. The model is highly sensitive to the input grain terminal velocity distribution so model input can be tested with a large degree of confidence. Complex secondary parameters such as jets, rotation and grain composition all have an effect on the structure of the coma in similar ways, so unique solutions for these parameters cannot be derived from a single optical image alone. Multiple images at a variety of geometries close in time can help constrain these effects. The model has been applied to photometric observations of comets 126P/IRAS and 46P/Wirtanen to constrain a number of physical properties including the dust production rate and mass distribution index. The derived dust production rate (Qdust) for 46P/Wirtanen was 3+7/1.5 kg s1 at a pre-perihelion heliocentric distance of 1.8 au, and for P/IRAS was 50+100/20 kg s1 at a pre-perihelion heliocentric distance of 1.7 au; both comets exhibited a mass distribution index ? = 0.8 ± 0.15

    Graz Endocrine Causes of Hypertension (GECOH) study: a diagnostic accuracy study of aldosterone to active renin ratio in screening for primary aldosteronism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary aldosteronism (PA) affects approximately 5 to 10% of all patients with arterial hypertension and is associated with an excess rate of cardiovascular complications that can be significantly reduced by a targeted treatment. There exists a general consensus that the aldosterone to renin ratio should be used as a screening tool but valid data about the accuracy of the aldosterone to renin ratio in screening for PA are sparse. In the Graz endocrine causes of hypertension (GECOH) study we aim to prospectively evaluate diagnostic procedures for PA.</p> <p>Methods and design</p> <p>In this single center, diagnostic accuracy study we will enrol 400 patients that are routinely referred to our tertiary care center for screening for endocrine hypertension. We will determine the aldosterone to active renin ratio (AARR) as a screening test. In addition, all study participants will have a second determination of the AARR and will undergo a saline infusion test (SIT) as a confirmatory test. PA will be diagnosed in patients with at least one AARR of ≥ 5.7 ng/dL/ng/L (including an aldosterone concentration of ≥ 9 ng/dL) who have an aldosterone level of ≥ 10 ng/dL after the saline infusion test. As a primary outcome we will calculate the receiver operating characteristic curve of the AARR in diagnosing PA. Secondary outcomes include the test characteristics of the saline infusion test involving a comparison with 24 hours urine aldosterone levels and the accuracy of the aldosterone to renin activity ratio in diagnosing PA. In addition we will evaluate whether the use of beta-blockers significantly alters the accuracy of the AARR and we will validate our laboratory methods for aldosterone and renin.</p> <p>Conclusion</p> <p>Screening for PA with subsequent targeted treatment is of great potential benefit for hypertensive patients. In the GECOH study we will evaluate a standardised procedure for screening and diagnosing of this disease.</p

    Rationale and Plan for Vitamin D Food Fortification : A Review and Guidance Paper

    Get PDF
    Vitamin D deficiency can lead to musculoskeletal diseases such as rickets and osteomalacia, but vitamin D supplementation may also prevent extraskeletal diseases such as respiratory tract infections, asthma exacerbations, pregnancy complications and premature deaths. Vitamin D has a unique metabolism as it is mainly obtained through synthesis in the skin under the influence of sunlight (i.e., ultraviolet-B radiation) whereas intake by nutrition traditionally plays a relatively minor role. Dietary guidelines for vitamin D are based on a consensus that serum 25-hydroxyvitamin D (25[OH]D) concentrations are used to assess vitamin D status, with the recommended target concentrations ranging from >= 25 to >= 50 nmol/L (>= 10->= 20 ng/mL), corresponding to a daily vitamin D intake of 10 to 20 mu g (400-800 international units). Most populations fail to meet these recommended dietary vitamin D requirements. In Europe, 25(OH)D concentrations <30 nmol/L (12 ng/mL) and <50 nmol/L (20 ng/mL) are present in 13.0 and 40.4% of the general population, respectively. This substantial gap between officially recommended dietary reference intakes for vitamin D and the high prevalence of vitamin D deficiency in the general population requires action from health authorities. Promotion of a healthier lifestyle with more outdoor activities and optimal nutrition are definitely warranted but will not erase vitamin D deficiency and must, in the case of sunlight exposure, be well balanced with regard to potential adverse effects such as skin cancer. Intake of vitamin D supplements is limited by relatively poor adherence (in particular in individuals with low-socioeconomic status) and potential for overdosing. Systematic vitamin D food fortification is, however, an effective approach to improve vitamin D status in the general population, and this has already been introduced by countries such as the US, Canada, India, and Finland. Recent advances in our knowledge on the safety of vitamin D treatment, the dose-response relationship of vitamin D intake and 25(OH)D levels, as well as data on the effectiveness of vitamin D fortification in countries such as Finland provide a solid basis to introduce and modify vitamin D food fortification in order to improve public health with this likewise cost-effective approach.Peer reviewe

    Effect of genetically low 25-hydroxyvitamin D on mortality risk: Mendelian randomization analysis in 3 large European cohorts

    Get PDF
    Source at https://doi.org/10.3390/nu11010074.The aim of this study was to determine if increased mortality associated with low levels of serum 25-hydroxyvitamin D (25(OH)D) reflects a causal relationship by using a Mendelian randomisation (MR) approach with genetic variants in the vitamin D synthesis pathway. Individual participant data from three European cohorts were harmonized with standardization of 25(OH)D according to the Vitamin D Standardization Program. Most relevant single nucleotide polymorphisms of the genes CYP2R1 (rs12794714, rs10741657) and DHCR7/NADSYN1 (rs12785878, rs11234027), were combined in two allelic scores. Cox proportional hazards regression models were used with the ratio estimator and the delta method for calculating the hazards ratio (HR) and standard error of genetically determined 25(OH)D effect on all-cause mortality. We included 10,501 participants (50.1% females, 67.1±10.1 years) of whom 4003 died during a median follow-up of 10.4 years. The observed adjusted HR for all-cause mortality per decrease in 25(OH)D by 20 nmol/L was 1.20 (95% CI: 1.15–1.25). The HR per 20 nmol/L decrease in genetically determined 25(OH)D was 1.32 (95% CI: 0.80–2.24) and 1.35 (95% CI of 0.81 to 2.37) based on the two scores. In conclusion, the results of this MR study in a combined sample from three European cohort studies provide further support for a causal relationship between vitamin D deficiency and increased all-cause mortality. However, as the current study, even with ~10,000 participants, was underpowered for the study of the effect of the allele score on mortality, larger studies on genetics and mortality are needed to improve the precision

    Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium

    Get PDF
    Source at http://doi.org/10.1371/journal.pone.0170791Background:Vitamin D deficiency may be a risk factor for mortality but previous meta-analyses lacked standardization of laboratory methods for 25-hydroxyvitamin D (25[OH]D) concentrations and used aggregate data instead of individual participant data (IPD). We therefore performed an IPD meta-analysis on the association between standardized serum 25(OH)D and mortality.Methods:In a European consortium of eight prospective studies, including seven general population cohorts, we used the Vitamin D Standardization Program (VDSP) protocols to standardize 25(OH)D data. Meta-analyses using a one step procedure on IPD were performed to study associations of 25(OH)D with all-cause mortality as the primary outcome, and with cardiovascular and cancer mortality as secondary outcomes. This meta-analysis is registered at ClinicalTrials.gov, number NCT02438488.Findings:We analysed 26916 study participants (median age 61.6 years, 58% females) with a median 25(OH)D concentration of 53.8 nmol/L. During a median follow-up time of 10.5 years, 6802 persons died. Compared to participants with 25(OH)D concentrations of 75 to 99.99 nmol/L, the adjusted hazard ratios (with 95% confidence interval) for mortality in the 25(OH)D groups with 40 to 49.99, 30 to 39.99, and Interpretation:In the first IPD meta-analysis using standardized measurements of 25(OH)D we observed an association between low 25(OH)D and increased risk of all-cause mortality. It is of public health interest to evaluate whether treatment of vitamin D deficiency prevents premature deaths

    RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    Get PDF
    Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore