81 research outputs found

    External world scepticism and self scepticism

    Get PDF

    Closure Scepticism and The Vat Argument

    Get PDF

    Semantic self-knowledge and the vat argument

    Get PDF

    The knowledge and attitudes of South African-based runners regarding the use of analgesics during training and competition

    Get PDF
    Background: The use of analgesics is prevalent in runners, with the associated potential for serious harm. However, there is limited information regarding runners’ knowledge and attitudes towards the use of analgesics in relation to running. Objectives: To describe South African-based runners’ knowledge and attitudes regarding running-related analgesic use. Methods: This study has a descriptive, cross-sectional design. South African-based runners, over the age of 18 who ran at least one race in the year preceding the study were included in this study. Participants completed an online questionnaire, including sections on demographic information, training and competition history, pain medication use, and knowledge and attitudes regarding running-related analgesic use. Results: Data from 332 participants were analysed. Attitudes regarding the use of analgesics in relation to running were generally positive; however, knowledge was poor, with only 20% of participants achieving adequate knowledge scores (75% or above). Very few (n=49; 15%) had both adequate knowledge and positive attitudes, with most respondents (n=188; 58%) having inadequate knowledge and negative attitudes. Negative attitudes towards the use of analgesics were found to increase the odds of running-related analgesic use (OR 2.32; 95% CI:1.31-4.11). Conclusion: Knowledge regarding running-related use of analgesics was inadequate. Despite a lack of knowledge, attitudes were positive. Participants displayed positive attitudes towards safe practice regarding running-related analgesic use, but these did not translate into good practice. Targeted interventions are required to educate runners and improve their knowledge of all the effects associated with running-related analgesic use.

    CO emission and associated HI absorption from a massive gas reservoir surrounding the z=3 radio galaxy B3 J2330+3927

    Get PDF
    We present results of a comprehensive multi-frequency study of the radio galaxy B3 J2330+3927. The 1.9" wide radio source, consisting of 3 components, is bracketed by 2 objects in our Keck K-band image. Optical and near-IR Keck spectroscopy of these two objects yield z=3.087+-0.004. The brightest (K=18.8) object has a standard type II AGN spectrum, and is the most likely location of the AGN, which implies a one-sided jet radio morphology. Deep 113 GHz observations with the IRAM Plateau de Bure Interferometer reveal CO J=4-3 emission, which peaks at the position of the AGN. The CO line is offset by 500 km/s from the systemic redshift of the AGN, but corresponds very closely to the velocity shift of an associated HI absorber seen in Lya. This strongly suggests that both originate from the same gas reservoir surrounding the AGN host galaxy. Simultaneous 230 GHz interferometer observations find a ~3x lower integrated flux density when compared to single dish 250 GHz observations with MAMBO at the IRAM 30m telescope. This can be interpreted as spatially resolved thermal dust emission at scales of 0.5" to 6". Finally, we present a tau <1.3% limit to the HI 21 cm absorption against the radio source, which represents the seventh non-detection out of 8 z>2 radio galaxies observed to date with the WSRT. We present mass estimates for the atomic, neutral, and ionized hydrogen, and for the dust, ranging from M(HI)=2x10^7 M_Sun derived from the associated HI absorber in Lya up to M(H_2)=7x10^{10} M_Sun derived from the CO emission. This indicates that the host galaxy is surrounded by a massive reservoir of gas and dust. The K-band companion objects may be concentrations within this reservoir, which will eventually merge with the central galaxy hosting the AGN.Comment: 16 Pages, including 11 PostScript figures. Accepted for publication in Astronomy & Astrophysic

    Global Connectivity of Southern Ocean Ecosystems

    Get PDF
    Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Gothic Revival Architecture Before Horace Walpole's Strawberry Hill

    Get PDF
    The Gothic Revival is generally considered to have begun in eighteenth-century Britain with the construction of Horace Walpole’s villa, Strawberry Hill, Twickenham, in the late 1740s. As this chapter demonstrates, however, Strawberry Hill is in no way the first building, domestic or otherwise, to have recreated, even superficially, some aspect of the form and ornamental style of medieval architecture. Earlier architects who, albeit often combining it with Classicism, worked in the Gothic style include Sir Christopher Wren, Nicholas Hawksmoor, William Kent and Batty Langley, aspects of whose works are explored here. While not an exhaustive survey of pre-1750 Gothic Revival design, the examples considered in this chapter reveal how seventeenth- and eighteenth-century Gothic emerged and evolved over the course of different architects’ careers, and how, by the time that Walpole came to create his own Gothic ‘castle’, there was already in existence in Britain a sustained Gothic Revivalist tradition
    • 

    corecore