199 research outputs found

    Chlorinated Organics in Tropical Hardwood Kraft Pu1p and Paper Mill Effluents and their Elimination in an Activated Sludge Treatment System

    Get PDF
    The identity and concentration of major chlorinated organics in the combined effluents of the SFI Pulp and Paper Mill in Sabah, Malaysia, were determined. In the biologically treated effluent, chlorinated organics found to occur in a relatively higher concentration were trichloroacetic acid (838-994 µg/L), 1,1-dichlorodimethyl sulfone (DDS) (86-232 µg/L), dichloroacetic acid (14-18 µg/L), and trichloro syringol (5-18 µg/L). Compared to those of a number of softwood kraft mills, the load of chlorinated phenols and acids in the wastewater of SFI hardwood kraft mill was 3-8 times lower. The effectiveness of oxygen activated sludge treatment system in eliminating these chlorinated organics was found to be as follows: chlorinated phenols 20-70 %, DDS 60 %, and chlorinated acetic acids 30-99

    Thermal effect on the tribo-mechanical behavior of natural fiber composites at micro-scale

    Get PDF
    This paper aims to explore the thermal influence on the micro-tribo-mechanical behavior of natural fiber composites. Nanoindentation and scratch-test are used to characterize flax fibers reinforced polypropylene (PP) composites. Results show a different thermo-mechanical behavior between flax fibers and PP matrix. While the stiffness of PP matrix decreases by increasing the sample temperature, the stiffness of flax fibers shows an increase then a decrease by changing the sample temperature from 25 °C to 100 °C with a maximum at 60 °C. This attests to a modification of the chemical composition of flax fibers when increasing the temperature. The specific thermo-mechanical behavior of flax fibers affects their friction comportment at a high sliding speed which demonstrates that the tribology of NFRP composites is thermo-mechanical-dependent

    Cancer treatment: an overview of pulsed electric field utilization and generation

    Get PDF
    Patients diagnosed with cancer receive different types of treatments based on the type and the level of the tumour. An emerging treatment that differs from well-developed systematic therapies (i.e., Chemotherapy, Radiotherapy, and Immunotherapy) is Tumour Treating Field (TTF) treatment. Tumour behaviour under TTF treatment varies based on the electric field intensity; the process of exposing the tumour cells to an electric field is called electroporation. From the electrical perspective, the most efficient method for electroporation is to use a voltage pulse generator. Several pulse generator topologies have been introduced to overcome existing limitations, mitigate the drawbacks of classical generators, and provide more controllable, flexible, and portable solid-state voltage pulse generators. This paper provides a review of cancer treatment using TTF and highlights the key specifications required for efficient treatment. Additionally, potential voltage pulse generators are reviewed and compared in terms of their treatment efficacy and efficient use of electrical power

    Antibacterial Effect of Green Synthesized Silver Nanoparticles using Cineraria maritima

    Get PDF
    Nanoparticles display entirely novel physicochemical characteristics for specific applications because of their exceptional size and shape. Owing to the present study, we reported biosynthesis, characterization and antibacterial properties of Cineraria maritima (Cm) assisted silver nanoparticles (Ag NPs). The surface plasmon vibration, crystalline structure, surface morphology, elemental composition, and possible functional molecules vibration of prepared Cm-Ag NPs were characterized by different instrumentation techniques. The spectrum of UV-Vis of Cm-Ag NPs showed maximum plasma intensity occurred around 425nm. XRD spectrum showed the face-centred cubic (FCC) nature of Cm-Ag NPs. The SEM image of the Cm-Ag NPs demonstrated a predominantly spherical shape with cluster formation of small particles to large particles with sizes ranging from 21.57 nm to 39.16 nm. EDS spectrum indicated the existence of Ag elements in Cm-Ag NPs. FTIR intense peaks of Cm-Ag NPs showed the different functional molecules such as phenol, alkene, aldehydes, and a carbonyl group. In addition, Cm-Ag NPs coated textile cotton fabric sample showed substantial anti-bacterial properties against a tested bacterial pathogen

    Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites

    Get PDF
    Manufacturing processes of natural fiber reinforced polymer (NFRP) composites are becoming the interest of industrials and scientists because these eco-friendly materials are emerging in automotive and aerospace industries. In this context, machining processes of NFRP composites present significant issues related to the complex structure of natural fibers that need thorough tribological studies. This paper aims to explore the effect of natural fiber orientation on the machinability of NFRP composites using Merchant model in order to separate the shearing energy from the friction energy. Orthogonal cutting process is conducted on unidirectional flax fibers reinforced polypropylene composites by changing the fiber orientation from 0° to 90° with respect to the cutting direction. Iosipescu shear tests are also performed to determine the mechanical shear behavior in function of the fiber orientation. Results show the applicability of Merchant model on the machining analysis of NFRP composites by verifying the main model assumptions. The fiber orientation affects significantly the shearing and the friction energies that control the cutting behavior and the chip formation of the NFRP composite. The resulted machined surfaces are hence intimately related to the natural fiber orientation

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    A search for the decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+K+ννˉ)<5.2×105{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+π+ννˉ)<1.0×104{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let

    High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe

    Full text link
    We report on the realization of a high quality distributed Bragg reflector with both high and low refractive index layers lattice matched to ZnTe. Our structure is grown by molecular beam epitaxy and is based on binary compounds only. The high refractive index layer is made of ZnTe, while the low index material is made of a short period triple superlattice containing MgSe, MgTe, and ZnTe. The high refractive index step of Delta_n=0.5 in the structure results in a broad stopband and the reflectivity coefficient exceeding 99% for only 15 Bragg pairs.Comment: 4 pages, 3 figure
    corecore