5 research outputs found

    An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube<sup>® </sup>format

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes.</p> <p>Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling), hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures.</p> <p>Results</p> <p>In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube<sup>® </sup>format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR). Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo<sup>-</sup>, single primer amplification (SPA) or <it>In Vitro </it>Transcription (IVT) we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well.</p> <p>Conclusion</p> <p>As the designed protocol for amplifying mRNA starts from as little as 100 ng total RNA, it presents an alternative method for detecting even low expressed genes by microarray experiments in a highly reproducible and sensitive manner. Preservation of signal integrity is demonstrated out by QRT-PCR measurements. The little amounts of total RNA necessary for the analyses make this method applicable for investigations with limited material as in clinical samples from, for example, organ or tumour biopsies. Those are arguments in favour of the high potential of our assay compared to established procedures for amplification within the field of diagnostic expression profiling. Nevertheless, the screening character of microarray data must be mentioned, and independent methods should verify the results.</p

    GMPPA defects cause a neuromuscular disorder with α-dystroglycan hyperglycosylation.

    No full text
    GDP-mannose-pyrophosphorylase-B (GMPPB) facilitates the generation of GDP-mannose, a sugar donor required for glycosylation. GMPPB defects cause muscle disease due to hypoglycosylation of α-dystroglycan (α-DG). Alpha-DG is part of a protein complex, which links the extracellular matrix with the cytoskeleton, thus stabilizing myofibers. Mutations of the catalytically inactive homolog GMPPA cause alacrima, achalasia, and mental retardation syndrome (AAMR syndrome), which also involves muscle weakness. Here, we showed that Gmppa-KO mice recapitulated cognitive and motor deficits. As structural correlates, we found cortical layering defects, progressive neuron loss, and myopathic alterations. Increased GDP-mannose levels in skeletal muscle and in vitro assays identified GMPPA as an allosteric feedback inhibitor of GMPPB. Thus, its disruption enhanced mannose incorporation into glycoproteins, including α-DG in mice and humans. This increased α-DG turnover and thereby lowered α-DG abundance. In mice, dietary mannose restriction beginning after weaning corrected α-DG hyperglycosylation and abundance, normalized skeletal muscle morphology, and prevented neuron degeneration and the development of motor deficits. Cortical layering and cognitive performance, however, were not improved. We thus identified GMPPA defects as the first congenital disorder of glycosylation characterized by α-DG hyperglycosylation, to our knowledge, and we have unraveled underlying disease mechanisms and identified potential dietary treatment options

    Guidelines for the use of flow cytometry and cell sorting in immunological studies

    Get PDF
    International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
    corecore