18 research outputs found

    Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1

    Get PDF
    The transactivation of enhanced growth factor receptor (EGFR) by G protein–coupled receptor (GPCR) ligands is recognized as an important signaling mechanism in the regulation of complex biological processes, such as cancer development. Estrogen (E2), which is a steroid hormone that is intimately implicated in breast cancer, has also been suggested to function via EGFR transactivation. In this study, we demonstrate that E2-induced EGFR transactivation in human breast cancer cells is driven via a novel signaling system controlled by the lipid kinase sphingosine kinase-1 (SphK1). We show that E2 stimulates SphK1 activation and the release of sphingosine 1-phosphate (S1P), by which E2 is capable of activating the S1P receptor Edg-3, resulting in the EGFR transactivation in a matrix metalloprotease–dependent manner. Thus, these findings reveal a key role for SphK1 in the coupling of the signals between three membrane-spanning events induced by E2, S1P, and EGF. They also suggest a new signal transduction model across three individual ligand-receptor systems, i.e., “criss-cross” transactivation

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Get PDF
    Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention

    Androgens and esophageal cancer: What do we know?

    No full text

    Estrogen, estrogen receptors, and hepatocellular carcinoma: Are we there yet?

    No full text

    Estrogen, male dominance and esophageal adenocarcinoma: Is there a link?

    No full text
    Esophageal adenocarcinoma is a cancer with poor prognosis, and its incidence has risen sharply over recent decades. Obesity is a major risk factor for developing this cancer and there is a clear male gender bias in the incidence that cannot be fully explained by known risk factors. It is possible that a difference in the expression of estrogen, or its signaling axes, may contribute to this gender bias. We undertook a comprehensive literature search and analyzed the available data regarding estrogen and estrogen receptor expression, and the possible sex-specific links with esophageal adenocarcinoma development. Potentially relevant associations between visceral vs subcutaneous fat deposition and estrogen expression, and the effect of crosstalk between estrogen and leptin signaling were identified. We also found limited studies suggesting a role for estrogen receptor β expression in esophageal adenocarcinoma development. The current literature supports speculation on an etiological role for estrogen in the male gender bias in esophageal adenocarcinoma, but further studies are required

    Divergence of Intracellular Trafficking of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Receptor 3 in MCF-7 Breast Cancer Cells and MCF-7-Derived Stem Cell-Enriched Mammospheres

    No full text
    Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24– surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation

    Regulatory role of sphingosine kinase and sphingosine-1-phosphate receptor signaling in progenitor/stem cells

    No full text
    10.4252/wjsc.v10.i9.119WORLD JOURNAL OF STEM CELLS109119-13

    Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway

    No full text
    We previously demonstrated that sphingosine kinase-1 (SphK1) is an important mediator in the cytoplasmic signaling of estrogens, including Ca2+ mobilization, ERK1/2 activation, and the epidermal growth factor receptor transactivation. Here we report for the first time that SphK1 activity is causally associated with endocrine resistance in MCF-7 human breast cancer cells. Enforced overexpression of human SphK1 in MCF-7 cells resulted in enhanced cell proliferation and resistance to tamoxifen-induced cell growth arrest and apoptosis. Tamoxifen-resistant (TamR) MCF-7 cells selected by prolonged exposure to 4-hydroxytamoxifen, exhibited higher levels in SphK1 expression and activity, compared with the control cells. Inhibition of SphK1 activity by either specific pharmaceutical inhibitors or the dominant-negative mutant SphK1G82D restored the antiproliferative and proapoptotic effects of tamoxifen in the TamR cells. Furthermore, silencing of SphK1, but not SphK2, expression by the specific small interference RNA also restored the tamoxifen responsiveness in the TamR cells. Thus, blockade of the SphK1 signaling pathway may reprogram cellular responsiveness to tamoxifen and abrogate antiestrogen resistance in human breast cancer cells.Olga Sukocheva, Lijun Wang, Emily Verrier, Mathew A. Vadas and Pu Xi
    corecore