7 research outputs found

    Crawling the Cosmic Network: Identifying and Quantifying Filamentary Structure

    Full text link
    We present the Smoothed Hessian Major Axis Filament Finder (SHMAFF), an algorithm that uses the eigenvectors of the Hessian matrix of the smoothed galaxy distribution to identify individual filamentary structures. Filaments are traced along the Hessian eigenvector corresponding to the largest eigenvalue, and are stopped when the axis orientation changes more rapidly than a preset threshold. In both N-body simulations and the Sloan Digital Sky Survey (SDSS) main galaxy redshift survey data, the resulting filament length distributions are approximately exponential. In the SDSS galaxy distribution, using smoothing lengths of 10 h^{-1} Mpc and 15 h^{-1} Mpc, we find filament lengths per unit volume of 1.9x10^{-3} h^2 Mpc^{-2} and 7.6x10^{-4} h^2 Mpc^{-2}, respectively. The filament width distributions, which are much more sensitive to non-linear growth, are also consistent between the real and mock galaxy distributions using a standard cosmology. In SDSS, we find mean filament widths of 5.5 h^{-1} Mpc and 8.4 h^{-1} Mpc on 10 h^{-1} Mpc and 15 h^{-1} Mpc smoothing scales, with standard deviations of 1.1 h^{-1} Mpc and 1.4 h^{-1} Mpc, respectively. Finally, the spatial distribution of filamentary structure in simulations is very similar between z=3 and z=0 on smoothing scales as large as 15 h^{-1} Mpc, suggesting that the outline of filamentary structure is already in place at high redshift.Comment: 10 pages, 11 figures, accepted to MNRA

    The density and peculiar velocity fields of nearby galaxies

    Get PDF
    We review the quantitative science that can be and has been done with redshift and peculiar velocity surveys of galaxies in the nearby universe. After a brief background setting the cosmological context for this work, the first part of this review focuses on redshift surveys. The practical issues of how redshift surveys are carried out, and how one turns a distribution of galaxies into a smoothed density field, are discussed. Then follows a description of major redshift surveys that have been done, and the local cosmography out to 8,000 km/s that they have mapped. We then discuss in some detail the various quantitative cosmological tests that can be carried out with redshift data. The second half of this review concentrates on peculiar velocity studies, beginning with a thorough review of existing techniques. After discussing the various biases which plague peculiar velocity work, we survey quantitative analyses done with peculiar velocity surveys alone, and finally with the combination of data from both redshift and peculiar velocity surveys. The data presented rule out the standard Cold Dark Matter model, although several variants of Cold Dark Matter with more power on large scales fare better. All the data are consistent with the hypothesis that the initial density field had a Gaussian distribution, although one cannot rule out broad classes of non-Gaussian models. Comparison of the peculiar velocity and density fields constrains the Cosmological Density Parameter. The results here are consistent with a flat universe with mild biasing of the galaxies relative to dark matter, although open universe models are by no means ruled out.Comment: In press, Physics Reports. 153 pages. gzip'ed postscript of text plus 20 embedded figures. Also available via anonymous ftp at ftp://eku.ias.edu/pub/strauss/review/physrep.p

    Zweibasische Säuren (Dicarbonsäuren)

    No full text
    corecore