74 research outputs found

    Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length

    Get PDF
    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (β) and rate of change (κ). A strong linear relationship was found between the constants β and κ for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter

    Gliadin Peptide P31-43 Localises to Endocytic Vesicles and Interferes with Their Maturation

    Get PDF
    BACKGROUND: Celiac Disease (CD) is both a frequent disease (1:100) and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles. METHODS/PRINCIPAL FINDINGS: Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy. CONCLUSIONS: P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated maturation to late endosomes in cells and intestinal biopsies. Consequently, in P31-43-treated cells, Receptor Tyrosine Kinase (RTK) activation is extended. This finding may explain the role played by gliadin peptides in inducing proliferation and other effects in enterocytes from CD biopsies

    Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans

    Get PDF
    Polar oceans are particularly vulnerable to ocean acidification due to their low temperatures and reduced buffering capacity, and are expected to experience extensive low pH conditions and reduced carbonate mineral saturations states (Ω) in the near future. However, the impact of anthropogenic CO2 on pH and Ω will vary regionally between and across the Arctic and Southern Oceans. Here we investigate the carbonate chemistry in the Atlantic sector of two polar oceans, the Nordic Seas and Barents Sea in the Arctic Ocean, and the Scotia and Weddell Seas in the Southern Ocean, to determine the physical and biogeochemical processes that control surface pH and Ω. High-resolution observations showed large gradients in surface pH (0.10–0.30) and aragonite saturation state (Ωar) (0.2–1.0) over small spatial scales, and these were particularly strong in sea-ice covered areas (up to 0.45 in pH and 2.0 in Ωar). In the Arctic, sea-ice melt facilitated bloom initiation in light-limited and iron replete (dFe>0.2 nM) regions, such as the Fram Strait, resulting in high pH (8.45) and Ωar (3.0) along the sea-ice edge. In contrast, accumulation of dissolved inorganic carbon derived from organic carbon mineralisation under the ice resulted in low pH (8.05) and Ωar (1.1) in areas where thick ice persisted. In the Southern Ocean, sea-ice retreat resulted in bloom formation only where terrestrial inputs supplied sufficient iron (dFe>0.2 nM), such as in the vicinity of the South Sandwich Islands where enhanced pH (8.3) and Ωar (2.3) were primarily due to biological production. In contrast, in the adjacent Weddell Sea, weak biological uptake of CO2 due to low iron concentrations (dFe<0.2 nM) resulted in low pH (8.1) and Ωar (1.6). The large spatial variability in both polar oceans highlights the need for spatially resolved surface data of carbonate chemistry variables but also nutrients (including iron) in order to accurately elucidate the large gradients experienced by marine organisms and to understand their response to increased CO2 in the future

    The Ascorbate-glutathione-α-tocopherol Triad in Abiotic Stress Response

    Get PDF
    The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants

    Deep-Sea Nematodes Actively Colonise Sediments, Irrespective of the Presence of a Pulse of Organic Matter: Results from an In-Situ Experiment

    Get PDF
    A colonisation experiment was performed in situ at 2500 m water depth at the Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of deep-sea nematodes to disturbed, newly available patches, enriched with organic matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were filled with azoic deep-sea sediment and 13C-labelled food sources (diatoms and bacteria). After 10 days of incubation the tubes were analysed for nematode response in terms of colonisation and uptake. Nematodes actively colonised the tubes,however with densities that only accounted for a maximum of 2.13% (51 ind.10 cm−2) of the ambient nematode assemblages. Densities did not differ according to the presence or absence of organic matter, nor according to the type of organic matter added. The fact that the organic matter did not function as an attractant to nematodes was confirmed by the absence of notable 13C assimilation by the colonising nematodes. Overall, colonisationappears to be a process that yields reproducible abundance and diversity patterns, with certain taxa showing more efficiency. Together with the high variability between the colonising nematode assemblages, this lends experimental support to the existence of a spatio-temporal mosaic that emerges from highly localised, partially stochastic community dynamics

    Clostridium difficile infection.

    Get PDF
    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota

    Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium

    Get PDF
    The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines

    Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

    Get PDF
    The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.Comment: 6+18 pages, 6 figures, updated author lis

    Two euAGAMOUS genes control C-function in Medicago truncatula

    Get PDF
    [EN] C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development. In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage required to specify the C-function in M. truncatula.This work was funded by grants BIO2009-08134 and BIO2012-39849-C02-01 from the Spanish Ministry of Economy and Competitiveness and the Ramon y Cajal Program (RYC-2007-00627 to CGM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Serwatowska, J.; Roque Mesa, EM.; Gómez Mena, MC.; Constantin, GD.; Wen, J.; Mysore, KS.; Lund, OS.... (2014). Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS ONE. 9(8):103770-1-103770-12. https://doi.org/10.1371/journal.pone.0103770S103770-1103770-1298Prunet, N., & Jack, T. P. (2013). Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Flower Development, 3-33. doi:10.1007/978-1-4614-9408-9_1Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010). Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology, 21(1), 73-79. doi:10.1016/j.semcdb.2009.10.005Irish, V. F. (2010). The flowering of Arabidopsis flower development. The Plant Journal, 61(6), 1014-1028. doi:10.1111/j.1365-313x.2009.04065.xHeijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box Genes and Floral Development: the Dark Side. Journal of Experimental Botany, 63(15), 5397-5404. doi:10.1093/jxb/ers233Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., & Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346(6279), 35-39. doi:10.1038/346035a0Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-rPinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023Kramer, E. M., Jaramillo, M. A., & Di Stilio, V. S. (2004). Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics, 166(2), 1011-1023. doi:10.1534/genetics.166.2.1011Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0Irish, V. F. (2003). The evolution of floral homeotic gene function. BioEssays, 25(7), 637-646. doi:10.1002/bies.10292Zahn, L. M., Leebens-Mack, J. H., Arrington, J. M., Hu, Y., Landherr, L. L., dePamphilis, C. W., … Ma, H. (2006). Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evolution Development, 8(1), 30-45. doi:10.1111/j.1525-142x.2006.05073.xFerrandiz, C. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Ma, H., Yanofsky, M. F., & Meyerowitz, E. M. (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development, 5(3), 484-495. doi:10.1101/gad.5.3.484Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xKapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S., & Takatsuji, H. (2002). Role of petuniapMADS3in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant Journal, 32(1), 115-127. doi:10.1046/j.1365-313x.2002.01402.xPan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., & Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6(2), 163-173. doi:10.1105/tpc.6.2.163Dreni, L., & Kater, M. M. (2013). MADSreloaded: evolution of theAGAMOUSsubfamily genes. New Phytologist, 201(3), 717-732. doi:10.1111/nph.12555Brunner, A. M. (2000). Plant Molecular Biology, 44(5), 619-634. doi:10.1023/a:1026550205851Perl-Treves, R., Kahana, A., Rosenman, N., Xiang, Y., & Silberstein, L. (1998). Expression of Multiple AGAMOUS-Like Genes in Male and Female Flowers of Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 39(7), 701-710. doi:10.1093/oxfordjournals.pcp.a029424Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., … Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant Journal, 17(1), 51-62. doi:10.1046/j.1365-313x.1999.00351.xDong, Z., Zhao, Z., Liu, C., Luo, J., Yang, J., Huang, W., … Luo, D. (2005). Floral Patterning in Lotus japonicus. Plant Physiology, 137(4), 1272-1282. doi:10.1104/pp.104.054288Hofer, J. M., & Noel Ellis, T. (2014). Developmental specialisations in the legume family. Current Opinion in Plant Biology, 17, 153-158. doi:10.1016/j.pbi.2013.11.014Fourquin, C., del Cerro, C., Victoria, F. C., Vialette-Guiraud, A., de Oliveira, A. C., & Ferrándiz, C. (2013). A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus. Plant Physiology, 162(2), 907-917. doi:10.1104/pp.113.217570Hewitt EJ (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, UK: Commonwealth Agricultural Bureau.Cheng, X., Wang, M., Lee, H.-K., Tadege, M., Ratet, P., Udvardi, M., … Wen, J. (2013). An efficient reverse genetics platform in the model legumeMedicago truncatula. New Phytologist, 201(3), 1065-1076. doi:10.1111/nph.12575D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.xTadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.xCheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73Constantin, G. D., Krath, B. N., MacFarlane, S. A., Nicolaisen, M., Elisabeth Johansen, I., & Lund, O. S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 40(4), 622-631. doi:10.1111/j.1365-313x.2004.02233.xWesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xGuerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy R, editor. Plant Molecular Biology. Oxford, UK: Bios Scientific Publishers, Academic Press. pp. 121–147.Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xBenlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.xRoque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., … Cañas, L. A. (2012). Functional specialization of duplicated AP3-like genes inMedicago truncatula. The Plant Journal, 73(4), 663-675. doi:10.1111/tpj.12068Flanagan, C. A., Hu, Y., & Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. The Plant Journal, 10(2), 343-353. doi:10.1046/j.1365-313x.1996.10020343.xSieburth, L. E., & Meyerowitz, E. M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell, 9(3), 355-365. doi:10.1105/tpc.9.3.355Busch, M. A. (1999). Activation of a Floral Homeotic Gene in Arabidopsis. Science, 285(5427), 585-587. doi:10.1126/science.285.5427.585Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329Grønlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., & Lund, O. S. (2008). Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research, 135(2), 345-349. doi:10.1016/j.virusres.2008.04.005Mandel, M. A., Bowman, J. L., Kempin, S. A., Ma, H., Meyerowitz, E. M., & Yanofsky, M. F. (1992). Manipulation of flower structure in transgenic tobacco. Cell, 71(1), 133-143. doi:10.1016/0092-8674(92)90272-eMizukami, Y., & Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71(1), 119-131. doi:10.1016/0092-8674(92)90271-dCannon, S. B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., … Young, N. D. (2006). Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences, 103(40), 14959-14964. doi:10.1073/pnas.0603228103Young, N. D., & Bharti, A. K. (2012). Genome-Enabled Insights into Legume Biology. Annual Review of Plant Biology, 63(1), 283-305. doi:10.1146/annurev-arplant-042110-103754Jager, M. (2003). MADS-Box Genes in Ginkgo biloba and the Evolution of the AGAMOUS Family. Molecular Biology and Evolution, 20(5), 842-854. doi:10.1093/molbev/msg089Johansen, B., Pedersen, L. B., Skipper, M., & Frederiksen, S. (2002). MADS-box gene evolution—structure and transcription patterns. Molecular Phylogenetics and Evolution, 23(3), 458-480. doi:10.1016/s1055-7903(02)00032-5Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., … Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce ( Picea mariana ) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal, 15(5), 625-634. doi:10.1046/j.1365-313x.1998.00250.xParcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395(6702), 561-566. doi:10.1038/26903Causier, B., Bradley, D., Cook, H., & Davies, B. (2009). Conserved intragenic elements were critical for the evolution of the floral C-function. The Plant Journal, 58(1), 41-52. doi:10.1111/j.1365-313x.2008.03759.xAiroldi, C. A., & Davies, B. (2012). Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. Journal of Genetics and Genomics, 39(4), 157-165. doi:10.1016/j.jgg.2012.02.008Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., … Lozano, R. (2010). Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato. PLoS ONE, 5(12), e14427. doi:10.1371/journal.pone.0014427Kater, M. M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M. M., & Angenent, G. C. (1998). Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. The Plant Cell, 10(2), 171-182. doi:10.1105/tpc.10.2.171Tsuchimoto, S., van der Krol, A. R., & Chua, N. H. (1993). Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. The Plant Cell, 5(8), 843-853. doi:10.1105/tpc.5.8.843Airoldi, C. A., Bergonzi, S., & Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences, 107(44), 18898-18902. doi:10.1073/pnas.1009050107Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., & Davies, B. (2005). Evolution in Action: Following Function in Duplicated Floral Homeotic Genes. Current Biology, 15(16), 1508-1512. doi:10.1016/j.cub.2005.07.063Birchler, J. A., & Veitia, R. A. (2007). The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics. The Plant Cell, 19(2), 395-402. doi:10.1105/tpc.106.049338Birchler, J. A., & Veitia, R. A. (2009). The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist, 186(1), 54-62. doi:10.1111/j.1469-8137.2009.03087.xEdger, P. P., & Pires, J. C. (2009). Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research, 17(5), 699-717. doi:10.1007/s10577-009-9055-9Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.368140
    corecore