26 research outputs found

    A Morpho-molecular Perspective on the Diversity and Evolution of Spumellaria (Radiolaria)

    Get PDF
    Spumellaria (Radiolaria, Rhizaria) are holoplanktonic amoeboid protists, ubiquitous and abundant in the global ocean. Their silicified skeleton preserves very well in sediments, displaying an excellent fossil record extremely valuable for paleo-environmental reconstruction studies, from where most of their extant diversity and ecology have been inferred. This study represents a comprehensive classification of Spumellaria based on the combination of ribosomal taxonomic marker genes (rDNA) and morphological characteristics. In contrast to established taxonomic knowledge, we demonstrate that symmetry of the skeleton takes more importance than internal structures at high classification ranks. Such reconsideration allows gathering different morphologies with concentric structure and spherical or radial symmetry believed to belong to other Radiolaria orders from the fossil record, as for some Entactinaria families. Our calibrated molecular clock dates the origin of Spumellaria in the middle Cambrian (ca. 515 Ma), among the first radiolarian representatives in the fossil record. This study allows a direct connection between living specimens and extinct morphologies from the Cambrian, bringing both a standpoint for future molecular environmental surveys and a better understanding for paleo-environmental reconstruction analysis. (C) 2021 The Authors. Published by Elsevier GmbHThis work was supported by the IMPEKAB ANR 15-CE02-0011 grant and the Brittany Region ARED C16 1520A01, the Japan Society for Promotion of Science KAKENHI Grant No. K16K0-74750 for N. Suzuki and "the Cooperative Research Project with the Japan Science and Technology Agency (JST) and Centre National de la Recherche Scientifique (CNRS, France) "Morphomolecular Diversity Assessment of Ecologically, Evolutionary, and Geo-logically Relevant Marine Plankton (Radiolaria) ". We are grateful to the CNRS-Sorbonne University ABiMS bioinformatics platform (http://abims.sbroscoff.fr) for providing computational resources. The authors are grateful to the MOOSE observation national network (funded by CNRS-INSU and Research Infrastructure ILICO) which sustain the annual ship-based hydrographic sections in the northwestern Mediterranean Sea (MOOSEGE) , as well as John Dolan for hosting us multiple times at the Laboratoire d'Oceanographie of Villefranche sur Mer. We are greatly thankful to Cedric Berney for the phylogenetic advice and the valuable help on the interpretation of the "symbiotic" clade, as well as Vasily Zlatogursky for his contributions and feed-back on the heliozoan-like organism

    Estilos de apego y acoso entre iguales (bullying) en adolescentes

    Get PDF
    The aim of this work is twofold, (a) to validate the Spanish version of the Adolescent Relationship Scales Questionnaire (ARSQ) and (b) to examine associations between attachment and peer bullying (victimization). A total of 600 adolescents (aged 13-16 years) completed the ARSQ and the CAI-CA (a Spanish questionnaire of bullying victimization). Exploratory factor analyses of the ARSQ yield a structure of three uncorrelated factors which appear to correspond to the secure, fearful/preoccupied and dismissing kinds of attachment, respectively. Girls scored higher than boys on secure and fearful/preoccupied attachment. Thirty-four percent of the sample reported to have been victim of peer bullying. A hierarchical logistic regression analysis indicated that, after controlling for age and gender, fearful/preoccupied attachment significantly predicted the risk of being a victim of bullying. Results are discussed in respect of possible implications for the primary prevention of bullying.El objetivo del presente trabajo es doble: (a) validar la versión española del Adolescent Relationship Scales Questionnaire (ARSQ), y (b) examinar la asociación entre el apego y el acoso entre iguales (victimización). Un total de 600 adolescentes (entre 13 y 16 años de edad) cumplimentó el ARSQ y el CAI-CA (Cuestionario de Acoso entre Iguales—Conductas de Acoso). A través de análisis factoriales exploratorios del ARSQ obtuvimos una estructura de tres factores no correlacionados, los cuales correspondían a las formas de apego seguro, miedoso/preocupado y evitativo, respectivamente. Las chicas puntuaron más alto que los chicos en apego seguro y miedoso/ preocupado. El 34% de la muestra informó haber sido víctima de acoso entre iguales. El análisis de regresión logística jerárquica indicó que, tras controlar el efecto de la edad y el género, el apego miedoso/preocupado predecía el riesgo de ser víctima de acoso por los compañeros. Se discuten los resultados en relación con posibles implicaciones sobre la prevención primaria del bullying.

    Environmental DNA for freshwater fish monitoring: Insights for conservation within a protected area

    Get PDF
    Background Many fish species have been introduced in wild ecosystems around the world to provide food or leisure, deliberately or from farm escapes. Some of those introductions have had large ecological effects. The north American native rainbow trout (Oncorhynchus mykiss Walbaum, 1792) is one of the most widely farmed fish species in the world. It was first introduced in Spain in the late 19th century for sport fishing (Elvira 1995) and nowadays is used there for both fishing and aquaculture. On the other hand, the European native brown trout (Salmo trutta L.) is catalogued as vulnerable in Spain. Detecting native and invasive fish populations in ecosystem monitoring is crucial, but it may be difficult from conventional sampling methods such as electrofishing. These techniques encompass some mortality, thus are not adequate for some ecosystems as the case of protected areas. Environmental DNA (eDNA) analysis is a sensitive and non-invasive method that can be especially useful for rare and low-density species detection and inventory in water bodies. Methods In this study we employed two eDNA based methods (qPCR and nested PCR-RFLP) to detect salmonid species from mountain streams within a protected area, The Biosphere Reserve and Natural Park of Redes (Upper Nalón Basin, Asturias, Northern Spain), where brown trout is the only native salmonid. We also measured some habitat variables to see how appropriate for salmonids the area is. The sampling area is located upstream impassable dams and contains one rainbow trout fish farm. Results Employing qPCR methodology, brown trout eDNA was detected in all the nine sampling sites surveyed, while nested PCR-RFLP method failed to detect it in two sampling points. Rainbow trout eDNA was detected with both techniques at all sites in the Nalón River’ (n1, n2 and n3). Salmonid habitat units and water quality were high from the area studied. Discussion In this study, a high quantity of rainbow trout eDNA was found upstream and downstream of a fish farm located inside a Biosphere Reserve. Unreported escapes from the fish farm are a likely explanation of these results. Since salmonid habitat is abundant and the water quality high, the establishment of rainbow trout populations would be favored should escapes occur. Environmental DNA has here proved to be a valuable tool for species detection in freshwater environments, and the probe-based qPCR highly sensitive technique for detection of scarce species. We would recommend this method for routine monitoring and early detection of introduced species within natural reserves

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    fisheries and tourism social economic and ecological trade offs in coral reef systems

    Get PDF
    Coastal communities are exerting increasingly more pressure on coral reef ecosystem services in the Anthropocene. Balancing trade-offs between local economic demands, preservation of traditional values, and maintenance of both biodiversity and ecosystem resilience is a challenge for reef managers and resource users. Consistently, growing reef tourism sectors offer more lucrative livelihoods than subsistence and artisanal fisheries at the cost of traditional heritage loss and ecological damage. Using a systematic review of coral reef fishery reconstructions since the 1940s, we show that declining trends in fisheries catch and fish stocks dominate coral reef fisheries globally, due in part to overfishing of schooling and spawning-aggregating fish stocks vulnerable to exploitation. Using a separate systematic review of coral reef tourism studies since 2013, we identify socio-ecological impacts and economic opportunities associated to the industry. Fisheries and tourism have the potential to threaten the ecological stability of coral reefs, resulting in phase shifts toward less productive coral-depleted ecosystem states. We consider whether four common management strategies (unmanaged commons, ecosystem-based management, co-management, and adaptive co-management) fulfil ecological conservation and socioeconomic goals, such as living wage, job security, and maintenance of cultural traditions. Strategies to enforce resource exclusion and withhold traditional resource rights risk social unrest; thus, the coexistence of fisheries and tourism industries is essential. The purpose of this chapter is to assist managers and scientists in their responsibility to devise implementable strategies that protect local community livelihoods and the coral reefs on which they rely

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    Siliceous Rhizaria abundances and diversity in the Mediterranean Sea assessed by combined imaging and metabarcoding approaches

    No full text
    Siliceous Rhizaria (polycystine radiolarians and phaeodarians) are significant contributors to carbon and silicon biogeochemical cycles. Considering their broad taxonomic diversity and their wide size range (from a few micrometres up to several millimetres), a comprehensive evaluation of the entire community to carbon and silicon cycles is challenging. Here, we assess the diversity and contribution of silicified Rhizaria to the global biogenic silica stocks in the upper 500 m of the oligotrophic North-Western Mediterranean Sea using both imaging (FlowCAM, Zooscan and Underwater Vision Profiler) and molecular tools and data. While imaging data (cells m-3) revealed that the most abundant organisms were the smallest, molecular results (number of reads) showed that the largest Rhizaria had the highest relative abundances. While this seems contradictory, relative abundance data obtained with molecular methods appear to be closer to the total biovolume data than to the total abundance data of the organisms. This result reflects a potential link between gene copies number and the volume of a given cell allowing reconciling molecular and imaging data. Using abundance data from imaging methods we estimate that siliceous Rhizaria accounted for up to 6% of the total biogenic silica biomass of the siliceous planktonic community in the upper 500m of the water column

    Structural basis of hepatocyte growth factor /scatter factor and Met signalling.

    No full text
    The polypeptide growth factor, hepatocyte growth factor/scatter factor (HGF/SF), shares the multidomain structure and proteolytic mechanism of activation of plasminogen and other complex serine proteinases. HGF/SF, however, has no enzymatic activity. Instead, it controls the growth, morphogenesis, or migration of epithelial, endothelial, and muscle progenitor cells through the receptor tyrosine kinase MET. Using small-angle x-ray scattering and cryo-electron microscopy, we show that conversion of pro(single-chain)HGF/SF into the active two-chain form is associated with a major structural transition from a compact, closed conformation to an elongated, open one. We also report the structure of a complex between two-chain HGF/SF and the MET ectodomain (MET928) with 1:1 stoichiometry in which the N-terminal and first kringle domain of HGF/SF contact the face of the seven-blade beta-propeller domain of MET harboring the loops connecting the beta-strands b-c and d-a, whereas the C-terminal serine proteinase homology domain binds the opposite "b" face. Finally, we describe a complex with 2:2 stoichiometry between two-chain HGF/SF and a truncated form of the MET ectodomain (MET567), which is assembled around the dimerization interface seen in the crystal structure of the NK1 fragment of HGF/SF and displays the features of a functional, signaling unit. The study shows how the proteolytic mechanism of activation of the complex proteinases has been adapted to cell signaling in vertebrate organisms, offers a description of monomeric and dimeric ligand-receptor complexes, and provides a foundation to the structural basis of HGF/SF-MET signaling
    corecore