46 research outputs found

    Outcome of Laminoplasty in Patients with Multilevel Cervical Myelopathy

    Get PDF
    Objective: To determine the outcome of surgical intervention in the form of laminoplasty in the patients with multilevel cervical myelopathy. Material and Methods: Descriptive case series, was conducted at NS-I, PINS, Lahore for 6 months. The patients were included through non probability consecutive sampling that fulfilled inclusion criteria. All of the patients were assessed using JOA score before and after 2 months of surgery. General characteristics, including age, gender, other medical conditions and other risk factors were assessed prior to surgery. The total number of 35 patients was included with expected JOA percentage recovery rate of 75% + 21% after the procedure. Results: In this study 35 total patients were enrolled. The mean age was 55.68 + 9.92 years. Total number of male patients were 23 (65.71), while the female was 12 (34.29). The mean duration of degenerative cervical myelopathy was 3.90 + 1.3 months. The mean pre op value of JOA score was 7.08 + 2.7 (4 – 10) for the patients. The mean post op score was 13.00 + 2.30 (9 – 17). The mean recovery value calculated at two month interval was 62.12 + 17.39 (38.46 – 100). Statistically, there was a significant difference of outcome of pre and post op value of JOA scores i.e., p value = 0.00. Conclusion: Our study determined that, the open door laminoplasty is an effective and reliable technique with good outcome in the treatment of multi-level degenerative cervical spine myelopathy patients.&nbsp

    Understanding the relationship between technological innovation and environmental sustainability under the silver lining of education

    Get PDF
    Information and communication technology has gradually become one of the most important pillars of the economy. In addition to economic growth, environmental pollution is a product of information and communication technologies (ICTs) as well. However, whether and how ICTs may affect these systems is unclear. Based on a more comprehensive measurement of ICTs, the current study has investigated the impact of ICTs, education, and economic performance on environmental sustainability from 2000 to 2019 across 93 countries categorized as low-income, middle-income, and high-income. Contrary to preceding studies, this research has used advanced econometric techniques to counter heterogeneities and dependencies in the data and, thus, has produced more trustworthy and efficient results. The finding obtained from the Bias-corrected method of the moment’s estimator and Driscoll and Kraal’s standard error techniques are consistent. According to the results, ICTs have a heterogenous effect on environmental sustainability across low-, middle- and high-income countries. Further results have revealed that education plays a significant role in maintaining environmental sustainability across middle—and high-income groups but does not seem to do so for lower—income groups. Environmental education for all should be part of the policy measures to tackle climate change across all income groups

    Effects of different mixing methods towards black seed oil-alginate emulsion characteristics.

    Get PDF
    Introduction: Black seed oil (BSO) contains active ingredient, thymoquinone which is well-known for its antioxidant property. The bitter taste of BSO makes it hard for the consumers especially children and elderly to consume it daily. Therefore, BSO is encapsulated in alginate beads in micrometre size to improve its palatability. This encapsulation was already established in the lab scale. Production of the beads in a large quantity requires initial preparation of an optimised BSO-alginate emulsion starting with the different mixing methods including the sonication process. Objectives: This study aims to prepare an optimised BSO-alginate emulsion using different types of mixing instruments and flow cell of the sonication process. Materials and Methods: BSO-alginate emulsion was prepared using magnetic stirrer (MS) as the benchmark, overhead stirrer (OS), homogeniser (H) and overhead stirrer combined with homogeniser (OSH). Then, the coarse emulsion was sonicated to produce a stable emulsion. The studied parameters were mixing time, turbidity, droplet size and zeta potential. The results of each mixing method were then analysed statistically. Results: The time taken for alginate to completely dissolve in BSO emulsion for MS, OS, H and OSH were 45, 230, 102 and 46 minutes respectively. Turbidity of BSO-alginate emulsion using OSH was significantly (p<0.05) lower than the benchmark indicates a more stable emulsion. There were no significant differences (p<0.05) between the droplet size and zeta potential of OSH and MS emulsions. Conclusion: OSH gives better emulsion characteristics in terms of lower turbidity, similar mixing time, droplet size and zeta potential compared to MS

    Tree species that 'live slow, die older' enhance tropical peat swamp restoration : Evidence from a systematic review

    Get PDF
    Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study-sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half-life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half-life was 33 months across all species, sites and treatments. Species differed significantly in survival and half-life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half-life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half-life and RGR. RGR and half-life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.Peer reviewe

    Tree species that 'live slow, die older' enhance tropical peat swamp restoration : Evidence from a systematic review

    Get PDF
    Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study-sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half-life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half-life was 33 months across all species, sites and treatments. Species differed significantly in survival and half-life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half-life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half-life and RGR. RGR and half-life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.Peer reviewe

    Role of financial development, economic growth & foreign direct investment in driving climate change: A case of emerging ASEAN.

    Get PDF
    In the context of remarkable economic growth and financial development in the emerging economies of East Asia, this paper attempts to shed light on the ecological consequences (CO2 emission) of economic growth, foreign direct investment and financial development in the selected ASEAN-5 economies. Drawing on the data from 1982 to 2014, we employed a set of quantitative techniques for panel data analysis which entailed Dynamic Ordinary Least Squares (DOLS) and Fully Modified OLS (FMOLS) approaches. Our findings indicate that financial and economic development, as well as FDI, have a statistically significant long-run co-integrating relationship with environmental degradation (CO2 emissions) in the under analysis economies. It showed that in ASEAN-5 countries, economic growth, financial development and FDI leads to an increase in environmental degradation. The quadratic term for economic growth showed a negative impact on environmental degradation i.e. Environmental Kuznets Curve (EKC). Our key findings manifest and emphasise the importance of appropriate policies for more inclusive economic and financial development and sustainable foreign direct investment which does not impede on the environment

    The foreign direct investment-environment nexus: does emission disaggregation matter?

    Get PDF
    This paper examines the effect of foreign direct investment (FDI) on CO2 emissions by using disaggregated emissions data; territorial-based and consumption-based emissions. FDI is measured in three ways; inflow, net inflow, and stock. Employing data over the period 1995–2014 and a number of estimators, the results indicate FDI (whether measured as inflow or net inflow) has negative impact on emissions (irrespective of the measurement). However, the impact is generally found to be greater for the territorial-based emissions. The results of the FDI flow variables largely support the pollution halo hypothesis. Thus, the results are supportive of the robust effect of FDI’s positive effect. Regarding the stock measure, the negative effect of FDI is only found for the territorial-based CO2 emissions. Since the territorial-based emissions capture emissions in the domestic economy only, it is not surprising that the plausible efficiency of FDI stock is found to reduce these emissions rather the consumption-based. FDI stock is now considered part of the local economy. The results of the paper are largely not parallel with previous studies that did not disaggregate CO2 emissions. This we believe is an indication that the measure of CO2 matters for the analyses of the FDI-emissions nexus

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill &amp; Melinda Gates Foundation

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore