71 research outputs found
A 120-Mpc Periodicity in the Three-Dimensional Distribution of Galaxy Superclusters
Using a new compilation of available data on galaxy clusters and
superclusters we present evidence for a quasiregular three-dimensional network
of rich superclusters and voids, with the regions of high density separated by
about 120 Mpc. We calculate the power spectrum for clusters of galaxies; it has
a peak on the wavelength equal to the step of the network; the excess in the
amplitude of the spectrum over that of the cold dark matter model is by a
factor of 1.4. The probability that the spectrum can be formed within the
framework of the standard cosmogony is very small. If the cluster distribution
reflects the distribution of all matter (luminous and dark), then there must
exists some hithero unknown process that produces regular structure on large
scales.Comment: Tex, 6 pages, 2 PostScript figures embedded, accepted by Nature on
November 19, 199
Environmental Enhancement of DM Haloes
We study the properties of dark matter haloes of a LCDM model in different
environments. Using the distance of the 5th nearest neighbour as an
environmental density indicator, we show that haloes in a high density
environment are more massive, richer, have larger radii and larger velocity
dispersions than haloes in a low density environment. Haloes in high density
regions move with larger velocities, and are more spherical than haloes in low
density regions. In addition, low mass haloes in the vicinity of the most
massive haloes are themselves more massive, larger, and have larger rms
velocities and larger 3D velocities than low mass haloes far from massive
haloes. The velocities of low mass haloes near massive haloes increase with the
parent halo mass. Our results are in agreement with recent findings about
environmental effects for groups and clusters of galaxies from deep (SDSS and
LCRS) surveys.Comment: 9 pages, 7 figures, submitted for Astronomy and Astrophysic
Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network
We study the relations between the multimodality of galaxy clusters drawn
from the SDSS DR8 and the environment where they reside. As cluster environment
we consider the global luminosity density field, supercluster membership, and
supercluster morphology. We use 3D normal mixture modelling, the
Dressler-Shectman test, and the peculiar velocity of cluster main galaxies as
signatures of multimodality of clusters. We calculate the luminosity density
field to study the environmental densities around clusters, and to find
superclusters where clusters reside. We determine the morphology of
superclusters with the Minkowski functionals and compare the properties of
clusters in superclusters of different morphology. We apply principal component
analysis to study the relations between the multimodality parametres of
clusters and their environment simultaneously. We find that multimodal clusters
reside in higher density environment than unimodal clusters. Clusters in
superclusters have higher probability to have substructure than isolated
clusters. The superclusters can be divided into two main morphological types,
spiders and filaments. Clusters in superclusters of spider morphology have
higher probabilities to have substructure and larger peculiar velocities of
their main galaxies than clusters in superclusters of filament morphology. The
most luminous clusters are located in the high-density cores of rich
superclusters. Five of seven most luminous clusters, and five of seven most
multimodal clusters reside in spider-type superclusters; four of seven most
unimodal clusters reside in filament-type superclusters. Our study shows the
importance of the role of superclusters as high density environment which
affects the properties of galaxy systems in them.Comment: 16 pages, 12 figures, 2 online tables, accepted for publication in
Astronomy and Astrophysic
Superclusters of galaxies in the 2dF redshift survey. III. The properties of galaxies in superclusters
We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift
Survey to study the properties of galaxies in superclusters. We compare the
properties of galaxies in high and low density regions of rich superclusters,
in poor superclusters and in the field, as well as in groups, and of isolated
galaxies in superclusters of various richness. We show that in rich
superclusters the values of the luminosity density smoothed on a scale of 8
\Mpc are higher than in poor superclusters: the median density in rich
superclusters is , in poor superclusters . Rich superclusters contain high density cores with densities while in poor superclusters such high density cores are absent. The
properties of galaxies in rich and poor superclusters and in the field are
different: the fraction of early type, passive galaxies in rich superclusters
is slightly larger than in poor superclusters, and is the smallest among the
field galaxies. Most importantly, in high density cores of rich superclusters
() there is an excess of early type, passive galaxies in groups
and clusters, as well as among those which do not belong to groups or clusters.
The main galaxies of superclusters have a rather limited range of absolute
magnitudes. The main galaxies of rich superclusters have larger luminosities
than those of poor superclusters and of groups in the field. Our results show
that both the local (group/cluster) environments and global (supercluster)
environments influence galaxy morphologies and their star formation activity.Comment: 13 pages, 10 figures, submitted to Astronomy and Astrophysic
Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution
We search for the presence of substructure, a non-Gaussian, asymmetrical
velocity distribution of galaxies, and large peculiar velocities of the main
galaxies in galaxy clusters with at least 50 member galaxies, drawn from the
SDSS DR8. We employ a number of 3D, 2D, and 1D tests to analyse the
distribution of galaxies in clusters: 3D normal mixture modelling, the
Dressler-Shectman test, the Anderson-Darling and Shapiro-Wilk tests and others.
We find the peculiar velocities of the main galaxies, and use principal
component analysis to characterise our results. More than 80% of the clusters
in our sample have substructure according to 3D normal mixture modelling, the
Dressler-Shectman (DS) test shows substructure in about 70% of the clusters.
The median value of the peculiar velocities of the main galaxies in clusters is
206 km/s (41% of the rms velocity). The velocities of galaxies in more than 20%
of the clusters show significant non-Gaussianity. While multidimensional normal
mixture modelling is more sensitive than the DS test in resolving substructure
in the sky distribution of cluster galaxies, the DS test determines better
substructure expressed as tails in the velocity distribution of galaxies.
Richer, larger, and more luminous clusters have larger amount of substructure
and larger (compared to the rms velocity) peculiar velocities of the main
galaxies. Principal component analysis of both the substructure indicators and
the physical parameters of clusters shows that galaxy clusters are complicated
objects, the properties of which cannot be explained with a small number of
parameters or delimited by one single test. The presence of substructure, the
non-Gaussian velocity distributions, as well as the large peculiar velocities
of the main galaxies, shows that most of the clusters in our sample are
dynamically young.Comment: 15 pages, 11 figures, 2 online tables, accepted for publication in
Astronomy and Astrophysic
Toward Understanding Environmental Effects in SDSS Clusters
We find clusters and superclusters of galaxies using the Data Release 1 of
the Sloan Digital Sky Survey. We determine the luminosity function of clusters
and find that clusters in a high-density environment have a luminosity a factor
of ~5 higher than in a low-density environment. We also study clusters and
superclusters in numerical simulations. Simulated clusters in a high-density
environment are also more massive than those in a low-density environment.
Comparison of the density distribution at various epochs in simulations shows
that in large low-density regions (voids) dynamical evolution is very slow and
stops at an early epoch. In contrast, in large regions of higher density
(superclusters) dynamical evolution starts early and continues until the
present; here particles cluster early, and by merging of smaller groups very
rich systems of galaxies form.Comment: 12 pages, 8 figures, submitted for Astronomy and Astrophysic
Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone
The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load
Raman spectroscopy: techniques and applications in the life sciences
Raman spectroscopy is an increasingly popular technique in many areas including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration
Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy
Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe
- …