80 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The embryo as moral work object: PGD/IVF staff views and experiences

    Get PDF
    Copyright @ 2008 the authors. This article is available in accordance with the Creative Commons Deed, Attribution 2.5, see http://creativecommons.org/licenses/by-nc-nd/2.5/deed.en_CA.We report on one aspect of a study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the field of preimplantation genetic diagnosis (PGD) for serious genetic disorders. The study produced an ethnography based on observation, interviews and ethics discussion groups with staff from two PGD/IVF Units in the UK. We focus here on staff perceptions of work with embryos that entails disposing of ‘affected’ or ‘spare’ embryos or using them for research. A variety of views were expressed on the ‘embryo question’ in contrast to polarised media debates. We argue that the prevailing policy acceptance of destroying affected embryos, and allowing research on embryos up to 14 days leaves some staff with rarely reported, ambivalent feelings. Staff views are under-researched in this area and we focus on how they may reconcile their personal moral views with the ethical framework in their field. Staff construct embryos in a variety of ways as ‘moral work objects’. This allows them to shift attention between micro-level and overarching institutional work goals, building on Casper's concept of ‘work objects’ and focusing on negotiation of the social order in a morally contested field.The Wellcome Trust Biomedical Ethics Programme, who funded the projects‘Facilitating choice, framing choice: the experience of staff working in pre-implantation genetic diagnosis’ (no: 074935), and ‘Ethical Frameworks for Embryo Donation:the views and practices of IVF/PGD staff’ (no: 081414)
    corecore