86 research outputs found

    Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachishypogaea L.)

    Get PDF
    Cultivated groundnut or peanut (Arachis hypogaea L.), an allotetraploid (2n = 4x = 40), is a self pollinated and widely grown crop in the semi-arid regions of the world. Improvement of drought tolerance is an important area of research for groundnut breeding programmes. Therefore, for the identification of candidate QTLs for drought tolerance, a comprehensive and refined genetic map containing 191 SSR loci based on a single mapping population (TAG 24 × ICGV 86031), segregating for drought and surrogate traits was developed. Genotyping data and phenotyping data collected for more than ten drought related traits in 2–3 seasons were analyzed in detail for identification of main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) using QTL Cartographer, QTLNetwork and Genotype Matrix Mapping (GMM) programmes. A total of 105 M-QTLs with 3.48–33.36% phenotypic variation explained (PVE) were identified using QTL Cartographer, while only 65 M-QTLs with 1.3–15.01% PVE were identified using QTLNetwork. A total of 53 M-QTLs were such which were identified using both programmes. On the other hand, GMM identified 186 (8.54–44.72% PVE) and 63 (7.11–21.13% PVE), three and two loci interactions, whereas only 8 E-QTL interactions with 1.7–8.34% PVE were identified through QTLNetwork. Interestingly a number of co-localized QTLs controlling 2–9 traits were also identified. The identification of few major, many minor M-QTLs and QTL × QTL interactions during the present study confirmed the complex and quantitative nature of drought tolerance in groundnut. This study suggests deployment of modern approaches like marker-assisted recurrent selection or genomic selection instead of marker-assisted backcrossing approach for breeding for drought tolerance in groundnut

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    The magnetic Rayleigh–Taylor instability in solar prominences

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Measurement of charged-particle event shape variables in inclusive root(s)=7 TeV proton-proton interactions with the ATLAS detector

    Get PDF
    The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor, and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged-particle transverse momentum, charged-particle multiplicity, and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data

    Drons col·laboratius

    Get PDF
    La robòtica col·laborativa és senzillament robots dissenyats per dur a terme treballs de col·laboració amb els humans. Els robots col·laboratius o cobots són cada cop més utilitzats a les indústries. La robòtica col·laborativa és un dels àmbits d'actualitat en aquests moments. Però també és un dels més interessants en més d'un sentit. Com es comuniquen dos drons autònoms que col·laboren per fer una tasca? Com són aquests missatges que s'envien? Que poden fer que no podrien fer sols? Aquestes són algunes de les preguntes que ens volem respondre en aquest projecte. En aquest treball es presenta un disseny i implementació de dos drons terrestres que es comuniquen per col·laborar entre ells per resoldre una tasca.Collaborative robotics is simply robots designed to perform collaborative work with humans. Collaborative robots or cobots are increasingly used in industries. Collaborative robotics is one of the current topics now. But it is also one of the most interesting in more ways than one. How do two autonomous drones that collaborate to perform a task communicate? How are these messages sent? What can they do that they could not do alone? These are some of the questions we want to answer in this project. This work presents a design and implementation of two ground drones that communicate to collaborate with each other to solve a task.La robótica colaborativa es sencillamente robots diseñados para llevar a cabo trabajos de colaboración con los humanos. Los robots colaborativos o cobots son cada vez más utilizados en las industrias. La robótica colaborativa es uno de los ámbitos de actualidad. Pero también es uno de los más interesantes en más de un sentido. ¿Cómo se comunican drones autónomos que colaboran para hacer una tarea? ¿Cómo son estos mensajes que es envían? ¿Qué pueden hacer que no lo podrían hacer solos? Estas son algunas de las preguntas que queremos responder con este proyecto. En este trabajo se presenta un diseño e implementación de dos drones terrestres que se comunican para colaborar entre ellos para resolver una tarea
    corecore