150 research outputs found
Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings
In this study, we analyze the processing of low-frequency sounds in the cochlear apex through responses of auditory nerve fibers (ANFs) that innervate the apex. Single tones and irregularly spaced tone complexes were used to evoke ANF responses in Mongolian gerbil. The spike arrival times were analyzed in terms of phase locking, peripheral frequency selectivity, group delays, and the nonlinear effects of sound pressure level (SPL). Phase locking to single tones was similar to that in cat. Vector strength was maximal for stimulus frequencies around 500 Hz, decreased above 1 kHz, and became insignificant above 4 to 5 kHz. We used the responses to tone complexes to determine amplitude and phase curves of ANFs having a characteristic frequency (CF) below 5 kHz. With increasing CF, amplitude curves gradually changed from broadly tuned and asymmetric with a steep low-frequency flank to more sharply tuned and asymmetric with a steep high-frequency flank. Over the same CF range, phase curves gradually changed from a concave-upward shape to a concave-downward shape. Phase curves consisted of two or three approximately straight segments. Group delay was analyzed separately for these segments. Generally, the largest group delay was observed near CF. With increasing SPL, most amplitude curves broadened, sometimes accompanied by a downward shift of best frequency, and group delay changed along the entire range of stimulus frequencies. We observed considerable across-ANF variation in the effects of SPL on both amplitude and phase. Overall, our data suggest that mechanical responses in the apex of the cochlea are considerably nonlinear and that these nonlinearities are of a different character than those known from the base of the cochlea
Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria
The similarity in the genetic regulation of
arthropod and vertebrate appendage formation has been
interpreted as the product of a plesiomorphic gene
network that was primitively involved in bilaterian
appendage development and co-opted to build appendages
(in modern phyla) that are not historically related
as structures. Data from lophotrochozoans are needed to
clarify the pervasiveness of plesiomorphic appendage forming
mechanisms. We assayed the expression of three
arthropod and vertebrate limb gene orthologs, Distal-less
(Dll), dachshund (dac), and optomotor blind (omb), in
direct-developing juveniles of the polychaete Neanthes
arenaceodentata. Parapodial Dll expression marks premorphogenetic
notopodia and neuropodia, becoming restricted
to the bases of notopodial cirri and to ventral
portions of neuropodia. In outgrowing cephalic appendages,
Dll activity is primarily restricted to proximal
domains. Dll expression is also prominent in the brain. dac
expression occurs in the brain, nerve cord ganglia, a pair
of pharyngeal ganglia, presumed interneurons linking a
pair of segmental nerves, and in newly differentiating
mesoderm. Domains of omb expression include the brain,
nerve cord ganglia, one pair of anterior cirri, presumed
precursors of dorsal musculature, and the same pharyngeal
ganglia and presumed interneurons that express dac.
Contrary to their roles in outgrowing arthropod and
vertebrate appendages, Dll, dac, and omb lack comparable
expression in Neanthes appendages, implying independent
evolution of annelid appendage development. We infer
that parapodia and arthropodia are not structurally or
mechanistically homologous (but their primordia might
be), that Dll’s ancestral bilaterian function was in sensory
and central nervous system differentiation, and that
locomotory appendages possibly evolved from sensory
outgrowths
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope
We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Phi(0)=(E/1 TeV)(gamma)center dot d Phi/dE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Phi(nu mu)+nu(0)(mu)+Phi(nu tau)+nu(0)(tau)=11.1x 10(-11) TeV-1 cm(-2) s(-1), in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Phi(nu mu)+nu(0)(mu)/Phi(nu tau)+nu(0)(tau)=1 and assuming a spectral index gamma=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Phi(nu mu)+nu(0)(mu)=5.5x10(-11) TeV-1 cm(-2) s(-1). A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties
Tonotopically Arranged Traveling Waves in the Miniature Hearing Organ of Bushcrickets
Place based frequency discrimination (tonotopy) is a fundamental property of the coiled mammalian cochlea. Sound vibrations mechanically conducted to the hearing organ manifest themselves into slow moving waves that travel along the length of the organ, also referred to as traveling waves. These traveling waves form the basis of the tonotopic frequency representation in the inner ear of mammals. However, so far, due to the secure housing of the inner ear, these waves only could be measured partially over small accessible regions of the inner ear in a living animal. Here, we demonstrate the existence of tonotopically ordered traveling waves covering most of the length of a miniature hearing organ in the leg of bushcrickets in vivo using laser Doppler vibrometery. The organ is only 1 mm long and its geometry allowed us to investigate almost the entire length with a wide range of stimuli (6 to 60 kHz). The tonotopic location of the traveling wave peak was exponentially related to stimulus frequency. The traveling wave propagated along the hearing organ from the distal (high frequency) to the proximal (low frequency) part of the leg, which is opposite to the propagation direction of incoming sound waves. In addition, we observed a non-linear compression of the velocity response to varying sound pressure levels. The waves are based on the delicate micromechanics of cellular structures different to those of mammals. Hence place based frequency discrimination by traveling waves is a physical phenomenon that presumably evolved in mammals and bushcrickets independently
Fatigue, reduced sleep quality and restless legs syndrome in Charcot-Marie-Tooth disease: a web-based survey
To investigate the prevalence of fatigue, daytime sleepiness, reduced sleep quality, and restless legs syndrome (RLS) in a large cohort of patients with Charcot-Marie-Tooth disease (CMT) and their impact on health-related quality of life (HRQoL). Participants of a web-based survey answered the Epworth Sleepiness Scale, the Pittsburgh Sleep Quality Index, the Multidimensional Fatigue Inventory, and, if the diagnostic criteria of RLS were met, the International RLS Severity Scale. Diagnosis of RLS was affirmed in screen-positive patients by means of a standardized telephone interview. HRQoL was assessed by using the SF-36 questionnaire. Age- and sex-matched control subjects were recruited from waiting relatives of surgical outpatients. 227 adult self-reported CMT patients answered the above questionnaires, 42.9% were male, and 57.1% were female. Age ranged from 18 to 78 years. Compared to controls (n = 234), CMT patients reported significantly higher fatigue, a higher extent and prevalence of daytime sleepiness and worse sleep quality. Prevalence of RLS was 18.1% in CMT patients and 5.6% in controls (p = 0.001). RLS severity was correlated with worse sleep quality and reduced HRQoL. Women with CMT were affected more often and more severely by RLS than male patients. With regard to fatigue, sleep quality, daytime sleepiness, RLS prevalence, RLS severity, and HRQoL, we did not find significant differences between genetically distinct subtypes of CMT. HRQoL is reduced in CMT patients which may be due to fatigue, sleep-related symptoms, and RLS in particular. Since causative treatment for CMT is not available, sleep-related symptoms should be recognized and treated in order to improve quality of life
Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus
Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies
Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes
A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hypothesis is that the frequency response class of any given neuron in the IC is predominantly inherited from one of three major afferent pathways projecting to the IC, giving rise to three distinct receptive field classes. Here, we applied subjective classification, principal component analysis, cluster analysis, and other objective statistical measures, to a large population (2826) of frequency response areas from single neurons recorded in the IC of the anaesthetised guinea pig. Subjectively, we recognised seven frequency response classes (V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-peaked), that were represented at all frequencies. We could identify similar classes using our objective classification tools. Importantly, however, many neurons exhibited properties intermediate between these classes, and none of the objective methods used here showed evidence of discrete response classes. Thus receptive field shapes in the IC form continua rather than discrete classes, a finding consistent with the integration of afferent inputs in the generation of frequency response areas. The frequency disposition of inhibition in the response areas of some neurons suggests that across-frequency inputs originating at or below the level of the IC are involved in their generation
Power efficiency of outer hair cell somatic electromotility
© 2009 Rabbitt et al. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 5 (2009): e1000444, doi:10.1371/journal.pcbi.1000444.Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.This work was supported by NIDCD R01 DC04928 (Rabbitt), NIDCD R01 DC00384 (Brownell) and NASA Ames GSRA56000135 (Breneman)
- …
