2,497 research outputs found

    Hemifacial Spasm and Neurovascular Compression

    Get PDF
    Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve

    Brainstem Auditory Evoked Potentials' Diagnostic Accuracy for Hearing Loss: Systematic Review and Meta-Analysis

    Get PDF
    Background: Microvascular decompression (MVD) utilizes brainstem auditory evoked potential (BAEP) intraoperative monitoring to reduce the risk of iatrogenic hearing loss. Studies report varying efficacy and hearing loss rates during MVD with intraoperative monitoring. Objectives: This study aims to perform a comprehensive review and study of diagnostic accuracy of BAEPs during MVD to predict hearing loss in studies published from January 1984 to December 2013. Methods: The PubMed/MEDLINE and World Science databases were searched. Studies performed MVD for trigeminal neuralgia, hemifacial spasm, glossopharyngeal neuralgia or geniculate neuralgia and monitored intraoperative BAEPs to prevent hearing loss. Retrospectively, BAEP parameters were compared with postoperative hearing. The diagnostic accuracy of significant change in BAEPs, which includes loss of response, was tested using summary receiver operative curve and diagnostic odds ratio (DOR). Results: A total of 13 studies were included in the analysis with a total of 2,540 cases. Loss of response pooled sensitivity, specificity, and DOR with 95% confidence interval being 74% (60–84%), 98% (88–100%), and 69.3 (18.2–263%), respectively. The similar significant change results were 88% (77–94%), 63% (40–81%), and 9.1 (3.9–21.6%). Conclusion: Patients with hearing loss after MVD are more likely to have shown loss of BAEP responses intraoperatively. Loss of responses has high specificity in evaluating hearing loss. Patients undergoing MVD should have BAEP monitoring to prevent hearing loss

    Primary central nervous system post-transplant lymphoproliferative disorder after allogeneic stem cell transplantation: a case report

    Get PDF
    PurposePrimary central nervous system, diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder in the cerebellopontine angle after an allogeneic stem cell transplantation has never been reported in the literature. Typically, diffuse large B-cell lymphoma is non-polyploid. We report the first case of a patient with polyploid post-transplant lymphoproliferative disorder in the cerebellopontine angle who presented with back pain.Case presentationA 45-year-old man with a history of nodular sclerosing classic Hodgkin lymphoma stage IIB treated with systemic chemotherapy, external radiation and autologous stem cell transplant and double umbilical cord allogeneic transplant presented with several weeks of back pain. He was found to have a small right cerebellopontine angle mass thought to be consistent with a meningioma. Patient presented again two weeks later with acute onset of severe headache, right sided ptosis, right facial numbness, weakness and possible seizure event. Repeat MRI scans showed an interval and significant increase of the right cerebellopontine angle lesion. Biopsy of the cerebellopontine angle lesion was planned with suspicion of lymphoma. Intraoperative pathology consultation findings were not consistent with an acoustic neuroma, meningioma, or epidermoid cyst. Lymphoma could not be definitively identified by intra-operative frozen section. However, it was suspected, and a portion of fresh specimen was submitted for flow cytometry analysis. A near total resection of the tumor and decompression of the brainstem was achieved. Final pathologic analysis was positive for post-transplant lymphoproliferative disorder, monomorphic type, diffuse large B-cell lymphoma, non-germinal center B-cell type, EBV+, post-transplant (allogeneic stem cell) setting (post-transplant lymphoproliferative disorder (PTLD), monomorphic type, diffuse large B-cell lymphoma, non-germinal center B-cell type (non-GCB), EBV-positive under pre-2022 WHO terminology). The patient began a high-dose methotrexate-based regimen (the MATRIX regimen).ConclusionsOur case illustrates an unusual presentation of post-transplant lymphoproliferative disorder in the cerebellopontine angle in a patient with a remote history of allogeneic stem cell transplantation. It demonstrates the importance of keeping primary central nervous system post-transplant lymphoproliferative disorder on the differential for patients who present with back pain or headache that have a history of allogeneic stem cell transplant

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
    corecore