107 research outputs found

    TreeToReads - a pipeline for simulating raw reads from phylogenies.

    Get PDF
    BackgroundUsing phylogenomic analysis tools for tracking pathogens has become standard practice in academia, public health agencies, and large industries. Using the same raw read genomic data as input, there are several different approaches being used to infer phylogenetic tree. These include many different SNP pipelines, wgMLST approaches, k-mer algorithms, whole genome alignment and others; each of these has advantages and disadvantages, some have been extensively validated, some are faster, some have higher resolution. A few of these analysis approaches are well-integrated into the regulatory process of US Federal agencies (e.g. the FDA's SNP pipeline for tracking foodborne pathogens). However, despite extensive validation on benchmark datasets and comparison with other pipelines, we lack methods for fully exploring the effects of multiple parameter values in each pipeline that can potentially have an effect on whether the correct phylogenetic tree is recovered.ResultsTo resolve this problem, we offer a program, TreeToReads, which can generate raw read data from mutated genomes simulated under a known phylogeny. This simulation pipeline allows direct comparisons of simulated and observed data in a controlled environment. At each step of these simulations, researchers can vary parameters of interest (e.g., input tree topology, amount of sequence divergence, rate of indels, read coverage, distance of reference genome, etc) to assess the effects of various parameter values on correctly calling SNPs and reconstructing an accurate tree.ConclusionsSuch critical assessments of the accuracy and robustness of analytical pipelines are essential to progress in both research and applied settings

    Bridging the Divide between Manual Gating and Bioinformatics with the Bioconductor Package flowFlowJo

    Get PDF
    In flow cytometry, different cell types are usually selected or “gated” by a series of 1- or 2-dimensional geometric subsets of the measurements made on each cell. This is easily accomplished in commercial flow cytometry packages but it is difficult to work computationally with the results of this process. The ability to retrieve the results and work with both them and the raw data is critical; our experience points to the importance of bioinformatics tools that will allow us to examine gating robustness, combine manual and automated gating, and perform exploratory data analysis. To provide this capability, we have developed a Bioconductor package called flowFlowJo that can import gates defined by the commercial package FlowJo and work with them in a manner consistent with the other flow packages in Bioconductor. We present this package and illustrate some of the ways in which it can be used

    Promoting novelty, rigor, and style in energy social science: towards codes of practice for appropriate methods and research design

    Get PDF
    A series of weaknesses in creativity, research design, and quality of writing continue to handicap energy social science. Many studies ask uninteresting research questions, make only marginal contributions, and lack innovative methods or application to theory. Many studies also have no explicit research design, lack rigor, or suffer from mangled structure and poor quality of writing. To help remedy these shortcomings, this Review offers suggestions for how to construct research questions; thoughtfully engage with concepts; state objectives; and appropriately select research methods. Then, the Review offers suggestions for enhancing theoretical, methodological, and empirical novelty. In terms of rigor, codes of practice are presented across seven method categories: experiments, literature reviews, data collection, data analysis, quantitative energy modeling, qualitative analysis, and case studies. We also recommend that researchers beware of hierarchies of evidence utilized in some disciplines, and that researchers place more emphasis on balance and appropriateness in research design. In terms of style, we offer tips regarding macro and microstructure and analysis, as well as coherent writing. Our hope is that this Review will inspire more interesting, robust, multi-method, comparative, interdisciplinary and impactful research that will accelerate the contribution that energy social science can make to both theory and practice

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

    Get PDF
    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r = -0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r = -0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Nanopore sequencing and assembly of a human genome with ultra-long reads

    Get PDF
    We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ~30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ~3 Mb). Next, we developed a protocol to generate ultra-long reads (N50 > 100kb, up to 882 kb). Incorporating an additional 5×-coverage of these data more than doubled the assembly contiguity (NG50 ~6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4 Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length and closure of gaps in the reference human genome assembly GRCh38

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore