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Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irre-

versible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis

of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve

parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10

new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies,

Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared

with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc

cupping and will allow greater understanding of mechanisms involved in this common blinding condition.
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O
ptic nerve degeneration caused by glaucoma is the most
common cause of irreversible blindness worldwide1.
Glaucomatous optic neuropathy is recognized by

changes in the morphology of the optic nerve head, or optic
disc, caused by loss of retinal ganglion cells and thinning of the
retinal nerve fibre layer. In glaucoma, the nerve fibre layer
typically thins in the superior and inferior regions of the nerve
creating a vertically elongated depression (the cup). The ratio of
the cup to the overall nerve size (the disc), called the vertical cup-
disc ratio (VCDR), is a key factor in the clinical assessment and
follow-up of patients with glaucoma. VCDR has been shown to be
heritable with h2 scores ranging between 0.48 and 0.662–7. At least
seven loci have been associated with VCDR in previous genome-
wide association studies (GWAS) and three of these were
subsequently implicated in primary open-angle glaucoma
(POAG)8–11. So far, the explained variance of open-angle
glaucoma by age, sex, intraocular pressure and established
POAG genes is still small (4–6%)12. As with other complex
diseases, large sample sizes are needed to ensure sufficient power
to fully define the underlying genetic architecture.

Here, we report the largest genome-wide meta-analysis for
VCDR, with data from 14 studies from Europe, the United States,
Australia and Asia, as part of the International Glaucoma
Genetics Consortium. The aim of the study is to identify loci
associated with VCDR, and to determine whether these variants
are also associated with glaucoma.

We perform the meta-analysis in four stages. In the first stage,
we meta-analyse summary data from 10 populations of European
ancestry comprising 21,094 individuals. In the second stage, we
test the cross-ancestry transferability of the statistically genome-
wide-significant associations from the first stage in 6,784
individuals from four Asian cohorts. In the third stage, we
examine whether the associations are independent of disc area
and/or spherical equivalent. We also combine the genome-wide-
significant effects into a genetic risk score and associate this
score with the POAG risk in five populations. Finally, we perform
gene-based tests and pathway analysis.

We find 10 new loci associated with VCDR, which together
increase the risk on POAG 2.5 times. Our findings will help us to
unravel the pathogenesis of glaucoma.

Results
Meta-analysis of GWAS. In stage 1, we analysed B2.5 million
HapMap stage 2 single-nucleotide polymorphisms (SNPs)—
either directly genotyped or imputed in 21,094 subjects of
European ancestry (Supplementary Fig. 1; Supplementary
Table 1; Supplementary Methods). The inflation factors (l)
varied between 0.98 and 1.12, implying adequate within-study
control of population substructure (Supplementary Table 2;
Supplementary Figs 2 and 3). The overall l was 1.05. This analysis
yielded 440 genome-wide-significant SNPs (Po5.0� 10� 8)
located across 15 chromosomal regions (Table 1; Supplementary
Fig. 4a). In stage 2, we investigated the SNP with the strongest
association at each region in the Asian populations and
found that eight were nominally significant (Po0.05) with an
effect in the same direction and generally the same order of
magnitude (Table 1; Supplementary Fig. 4b). Five of the seven
loci that did not reach nominal significance in those of Asian
descent had a similar effect in the same direction. Supplementary
Table 3 shows the most significant SNPs in Asians within
100,000 base pairs from the most significant associated SNP
in Europeans. Meta-analysis of only the Asian populations
did not result in new genome-wide-significant findings. The
combined analysis of the European and Asian populations
resulted in three additional genome-wide-significant associations

on chromosomes 1, 6 and 22 (Table 1; Fig. 1). The level of het-
erogeneity across the samples are shown in Table 1. Of the 18
genome-wide-significant loci, 10 are novel for the VCDR out-
come (COL8A1, DUSP1, EXOC2, PLCE1, ADAMTS8, RPAP3,
SALL1, BMP2, HSF2 and CARD10) (Supplementary Fig. 5). There
were no significant differences in terms of allele frequencies
across the different cohorts (Supplementary Table 4). The
effect estimates from the participating cohorts appear not to be
influenced by main demographic characteristics, such as mean
age and sex ratio (Supplementary Fig. 6).

Adjustment for disc area and spherical equivalent. Four of the
18 genome-wide-significant loci have been previously associated
with optic disc area (CDC7/TGFBR3, ATOH7, SALL1 and
CARD10)10,13. Because the size of the optic nerve varies between
individuals and is correlated to the VCDR14, we adjusted the
association to VCDR for optic nerve (disc) area. This resulted
in a reduced effect size and significance (P¼ 3.48� 10� 11 to
P¼ 9.00� 10� 3) at the CDC7–TGFBR3 locus, suggesting the
VCDR association at this locus is explained primarily by its
known association with disc area (Supplementary Table 5a–c).
A similar reduction in effect was seen for ATOH7. However, for
this locus there remains a significant disc-area-independent effect
(P¼ 7.28� 10� 9). There was no change in association
significance for any of the 10 new loci reported here, suggesting
they do not act primarily on disc area.

It is of interest that two genes (SIX6 and BMP2) overlap with
those implicated in myopia15, an important risk factor for
POAG16. The correlation between VCDR and spherical
equivalent is low (Supplementary Table 6), and adjusting for
spherical equivalent did not lead to any major changes in the
effects for these or other loci in European populations
(Supplementary Table 7a), suggesting a joint genetic aetiology
for POAG and myopia. In Asian cohorts, the direction of
effect on VCDR at the chromosome 11 locus (MIR612-SSSCA1
region) was not consistent with the European populations
(Supplementary Table 7b). However, after adjusting for
spherical equivalent the direction of effect on VCDR was
similar to both populations. At the BMP2 myopia locus, we
observed a large difference in allele frequency between those of
European and Asian ancestry (Table 1), which may explain the
difference in effect direction.

Risk for POAG. The 18 loci, together with age and sex, explain
5.1–5.9% of the VCDR phenotypic variability in Europeans
(measured in the Rotterdam Study I, II and III), of which 1.6–
1.8% is explained by the new loci. The phenotypic variability
explained by all common SNPs is 41–53% in these cohorts, which
is in line with the heritability estimates from family-based studies.
In addition to confirming the previously published CDKN2BAS
and SIX1/6 POAG risk loci, we found nominally significant
(Po0.05) associations with POAG for six newly identified genetic
variants (P¼ 8.1� 10� 5 from binomial test for chance of seeing
six or more such nominally significant associations in 16 tests)
(Supplementary Table 8), with odds ratios varying between 0.73
and 1.20. In the combined case-control studies, we found that
the sum of all effects of these genes increased the risk of POAG
2.5-fold (Supplementary Table 9) for those in the highest quintile
compared with those in the lowest quintile.

Gene-based test. To identify new loci not previously found
through individual SNP-based tests, we performed gene-based
tests using VEGAS software17. Because of the smaller number of
tests (17,872 genes tested), our gene-based significance threshold
is Pgene-basedo0.05/17,872¼ 2.80� 10� 6. In addition to the SNPs
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identified as significant (Po5� 10� 8) in a SNP-based test,
we also found two new genes significantly associated with
VCDR using the VEGAS gene-based test (Supplementary
Table 10). These were REEP5 (P¼ 7.48� 10� 7) and PITPNB
(P¼ 4.89� 10� 7). PITPNB is B800 kb from another gene with a
significant SNP association (CHEK2, rs1547014) (Supplementary
Fig. 7). Although the association signal centred over CHEK2

extends a long distance towards PITPNB, a separate association
peak over PITPNB can be observed, which is unrelated (no
linkage disequilibrium (LD)) to the CHEK2 peak. The results we
obtained using the specified definition of the gene unit were
substantially the same when alternative cutoff points from the
transcription initiation and end sites were used (Supplementary
Table 11). The REEP5 gene showed no association with POAG

Table 1 | Summary of the results of the meta-analyses of genome-wide association studies.

Caucasians (n = 21,094) Asians (n = 6,784) Combined (n = 27,878)

SNP Ch

r.

Position Nearest Gene Annotation A1

/

A2

MAF �� s.e. P value P value 

hetero-

geneity

MAF

*

� s.e. P value P value 

hetero-

geneity

� s.e. P value P value 

hetero-

geneity
I

2

rs4658101 1 91849997 CDC7/TGFBR3 intergenic a/g 0.18 0.015 0.002 8.80E–14 9.34E–02 0.14 0.016 0.005 3.13E–03 4.26E–01 0.015 0.002 1.06E–15 1.68E–01 0.54

rs2623325 3 100614445 COL8A1 intergenic a/c 0.13 0.018 0.003 7.05E–09 5.62E–02 0.16 0.011 0.005 1.46E–02 3.43E–01 0.016 0.003 6.61E–10 7.01E–02 0.42

rs17658229 5 172123657 DUSP1 intergenic c/t 0.05 –0.020 0.004 8.06E–09 5.95E–01 0.00 –0.086 0.133 5.17E–01 ** –0.020 0.004 8.06E–09 5.95E–01 0

rs17756712 6 570071 EXOC2 intronic g/a 0.18 0.010 0.002 1.98E–08 6.74E–01 0.14 0.011 0.005 1.76E–02 4.05E–01 0.010 0.002 1.13E–09 7.23E–01 0

rs7865618 9 22021005 CDKN2BAS intronic g/a 0.43 –0.013 0.001 2.80E–20 8.93E–01 0.15 –0.021 0.005 8.11E–06 3.31E–01 –0.013 0.001 4.97E–24 6.97E–01 0

rs1900005 10 69668061 ATOH7 intergenic a/c 0.23 –0.019 0.002 7.21E–31 2.96E–04 0.32 –0.010 0.004 2.08E–02 1.58E–01 –0.018 0.002 5.51E–31 8.54E–05 0.69

rs7072574 10 96026296 PLCE1 intronic a/g 0.33 0.009 0.002 6.17E–09 1.09E–01 0.38 0.007 0.003 4.80E–02 8.18E–01 0.009 0.001 1.02E–09 2.56E–01 0.18

rs1346 11 65093827 SSSCA1 5upstream t/a 0.19 –0.014 0.002 2.54E–15 7.49E–01 0.16 0.003 0.005 5.23E–01 7.19E–01 –0.012 0.002 4.89E–13 1.51E–01 0.28

rs4936099 11 129785935 ADAMTS8 intronic c/a 0.42 –0.009 0.002 6.38E–09 8.31E–01 0.09 –0.007 0.009 4.15E–01 1.14E–01 –0.009 0.002 4.61E–09 6.79E–01 0

rs11168187 12 46330278 RPAP3 intergenic g/a 0.16 –0.009 0.002 2.96E–08 1.00E+00 0.18 –0.005 0.004 2.80E–01 6.19E–01 –0.009 0.002 2.96E–08 9.98E–01 0

rs10862688 12 82447043 TMTC2 intergenic g/a 0.45 0.008 0.001 1.24E–11 4.80E–02 0.56 0.004 0.003 2.48E–01 1.20E–01 0.008 0.001 1.49E–11 2.61E–02 0.44

rs4901977 14 59858929 SIX1/6 intergenic t/c 0.31 0.010 0.002 1.98E–11 7.86E–01 0.53 0.017 0.003 2.64E–07 3.82E–02 0.011 0.001 2.13E–16 2.02E–01 0.22

rs1345467 16 50039822 SALL1 intergenic g/a 0.27 0.010 0.002 2.70E–12 1.68E–01 0.13 0.011 0.006 5.53E–02 4.13E–01 0.010 0.001 4.19E–13 2.48E–01 0.18

rs6054374 20 6526556 BMP2 intergenic t/c 0.42 –0.009 0.002 1.79E–08 1.26E–01 0.72 0.001 0.004 8.66E–01 5.99E–01 –0.007 0.001 1.69E–07 8.19E–02 0.37

rs1547014 22 27430711 CHEK2 intronic t/c 0.30 –0.013 0.001 2.98E–18 1.93E–01 0.17 –0.013 0.004 4.26E–03 8.11E–01 –0.013 0.001 4.77E–20 3.90E–01 0.06

rs301801 1 8418532 RERE intronic c/t 0.33 0.008 0.001 1.61E–07 2.46E–02 0.13 0.012 0.005 2.59E–02 5.38E–01 0.008 0.001 1.66E–08 5.23E–02 0.39

rs868153 6 122431654 HSF2 intergenic g/t 0.36 –0.007 0.001 5.08E–06 9.27E–01 0.39 –0.013 0.003 1.44E–04 4.96E–01 –0.007 0.001 1.39E–08 7.96E–01 0

rs5756813 22 36505423 CARD10 intergenic g/t 0.39 0.006 0.001 1.60E–05 8.22E–01 0.32 0.017 0.004 1.71E–06 1.84E–01 0.008 0.001 7.73E–09 1.98E–01 0.22

Chr., chromosome; MAF, minor allele frequency; SNP, single-nucleotide polymorphism.

Summary of SNPs that showed genome-wide-significant (Po5� 10� 8) association with vertical cup-disc ratio (VCDR) in subjects of European ancestry (stage 1), with results of replication in Asians

(stage 2) and the additional SNPs that showed genome-wide-significant (Po5� 10�8) association in the combined analysis (stage 3) (P values were calculated by using the z-statistic). We tested for

heterogeneous effects between the Asian and European ancestry samples, for which P values are shown (Cochran’s Q-test). Nearest gene, reference NCBI build 37; A1, reference allele; A2, other allele;

MAF, average minor allele frequency; b, effect size on VCDR based on allele A1; s.e., s.e. of the effect size. The last three rows indicate the SNPs that reached genome-wide significance in the combined

analysis, but not in stage 1 or stage 2.

*Note that, for the sake of keeping the same reference allele, MAF values may be 40.50 in the Asian populations.

**For this SNP, only one Asian study is contributing to the meta-analysis, so the P value for heterogeneity could not be calculated for this SNP in stage 2.
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(Supplementary Table 12). The PITPNB gene showed evidence
for association with POAG in Australian & New Zealand Registry
of Advanced Glaucoma (ANZRAG) (P¼ 0.03) in the gene-based
test, with a best single SNP P value of 0.003, but this was not
confirmed in two other studies.

Pathway analysis. To test whether gene-based statistics
identified were enriched in 4,628 pre-specified Gene Ontology
pathways, we performed pathway analysis using Pathway-
VEGAS18. We used a pathway-wide significance threshold to be
1.08� 10� 5 (0.05/4,628). The only pathway exceeding the
pathway-wide significance level was ‘negative regulation of
cyclin-dependent protein kinase activity’ (Supplementary
Table 13). The second top-pathway ‘negative regulation of
epithelial cell proliferation’ is related to the top pathway, both
suggesting retardation of cell growth. The ‘negative regulation of
cyclin-dependent protein kinase activity’ finding was driven not
only by the result at the CDKN2A locus but also by the result at
APC, a gene close to REEP5.

Regulatory elements and expression data. Six of the 18 most
associated SNPs are located in DNase I hypersensitivity sites
(Supplementary Table 14). The retinal pigment epithelium has
the highest signal of all 125 available cell lines in one of these
DNase I hypersensitivity sites. Thus, these results are suggesting
that some of the SNPs may have their effect on VCDR by altering
regulatory functions. We investigated the expression of the genes
implicated in VCDR by these analyses in human ocular gene
expression databases or the published literature. Most of these
genes are expressed in eye tissues, including the optic nerve
(Supplementary Tables 15 and 16).

Discussion
This study reports 10 novel loci associated with VCDR, with
an additional two loci identified using gene-based testing. Pathway
analysis suggests retardation of cell growth as a major biological
mechanism. The results for the most associated pathways ‘negative
regulation of cyclin-dependent protein kinase activity’ and
‘negative regulation of epithelial cell proliferation’ are primarily
driven by the CDKN2A and CDKN2B genes, respectively, but in
both pathways the gene-based result at APC (P¼ 7.20� 10� 5 in
Caucasians and P¼ 8.80� 10� 3 in Asians) also contributes to the
pathway result. The APC gene has previously been reported to be a
critical gene regulating retinal pigment epithelium proliferation
and development19. These results add to our earlier findings on
the role of growth and the transforming growth factor beta
(TGFB) pathways in VCDR10. Various new genes fall into
these pathways. The protein encoded by the BMP2 (bone
morphogenetic protein 2) gene on chromosome 20 belongs to
the TGFB super-family. Two other new genes regulate apoptosis:
RPAP3 (RNA polymerase II-associated protein 3) on chromosome
1220 and CARD10, a gene that was previously found to be
associated with disc area13. Another new VCDR association
previously associated with disc area is SALL110. This gene is
implicated in ocular development.

Our findings offer new insights in the aetiology of optic nerve
degeneration. COL8A1 (collagen, type VIII, alpha 1) is part of a
collagen pathway recently implicated in corneal thickness18, an
ocular trait also associated with glaucoma risk. Missense
mutations in COL8A2 (collagen, type VIII, alpha2) were found
in POAG patients with a very thin central corneal thickness
(CCT)21. The collagen SNP (rs2623325) was not significantly
associated with CCT (in Caucasians: b¼ � 0.044, P¼ 0.19;
in Asians: b¼ 0.007, P¼ 0.89) or intraocular pressure (in
Caucasians and Asians combined: b¼ � 0.02, P¼ 0.73) in

largely the same cohorts18,22, suggesting that the collagen
involvement in VCDR is not due to the influence by CCT or
intraocular pressure. We also found several genes involved in
cellular stress response. DUSP1 (dual specificity phosphatase 1) is
the nearest gene to the most strongly associated SNP on
chromosome 5. This gene, inducible by oxidative stress and
heat shock, may play a role in environmental stress response23,
and may also participate in the negative regulation of cellular
proliferation. HSF2 (heat shock transcription factor 2), one
of the genes at the chromosome 6 locus, also is part of the cellular
stress response pathway. Deficiency of this factor causes
various central nervous system defects in mice24,25. Another
pathway emerging in this study is that of exocytosis. The SNP on
the other chromosome 6 locus is located in EXOC2 (exocyst
complex component 2). The encoded protein is one of the
eight proteins of the exocyst complex26. This multi-protein
complex is important for directing exocytic vesicles to the
plasma membrane, a mechanism that also has been implicated
in neuronal degeneration in the brain27. Lipid metabolism
emerges as another pathway. The gene on chromosome 10,
PLCE1 (phospholipase C, epsilon 1), belongs to the phospho-
lipase C family, which plays a role in the generation
of second messengers28. Various processes affecting cell growth,
differentiation and gene expression are regulated by these
second messengers. From a clinical perspective, the findings on
ADAMTS8 are of interest. ADAMTS enzymes have different
functions, including the formation and turnover of the
extracellular matrix29. Strikingly, a variant in ADAMTS10 has
been linked to a form of glaucoma in dogs30,31.

In summary, we have now identified 10 novel loci associated
with cupping of the optic nerve, a key determinant of glaucoma.
Together, these genetic risk variants increased the risk of
POAG in case-control validation studies. Pathway analysis
implicated negative regulation of cell growth and cellular
response to environmental stress as key pathological pathways
in glaucoma, and that novel therapies targeting these pathways
may be neuro-protective in glaucoma.

Methods
Study design. We performed a meta-analysis on directly genotyped and imputed
SNPs from individuals of European ancestry in 10 studies, with a total of 21,094
individuals. Subsequently, we evaluated significantly associated SNPs in 6,784
subjects of Asian origin including four different studies and performed a meta-
analysis on all studies combined.

Subjects and phenotyping. All studies included in this meta-analysis are part of
the International Glaucoma Genetics Consortium. The ophthalmological
examination of each study included an assessment of the optic nerve head to
measure the VCDR (Supplementary Table 17a). Unreliable optic nerve data
were excluded.

The meta-analysis of stage 1 was based on 10 studies of European ancestry:
Brisbane Adolescent Twin Study, Blue Mountains Eye Study, Erasmus Rucphen
Family Study, Gutenberg Health Study (GHS I/GHS II), Glaucoma Genes and
Environment (controls only), National Eye Institute Glaucoma Human Genetics
Collaboration (NEIGHBOR; controls only), Raine Study, Rotterdam Study
(RS-I/RS-II/RS-III), Twins Eye Study in Tasmania and TwinsUK. Stage 2
comprised four Asian studies: Beijing Eye Study, Singapore Chinese Eye Study,
Singapore Malay Eye Study and Singapore Indian Eye Study. For each SNP with
the strongest association at each locus the association with POAG was tested in five
case-control studies: ANZRAG, deCODE, Massachusetts Eye and Ear Infirmary,
NEIGHBOR and Southampton.

Information on general methods, demographics, phenotyping and genotyping
methods of the study cohorts can be found in Supplementary Tables 1 and 17 and
the Supplementary Note. All studies were performed with the approval of their
local medical ethics committee, and written informed consent was obtained from
all participants in accordance with the Declaration of Helsinki.

Genotyping and imputation. Information on genotyping in each cohort and the
particular platforms used to perform genotyping can be found in more detail in
Supplementary Table 17b. To produce consistent data sets and enable a meta-
analysis of studies across different genotyping platforms, the studies performed

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5883

4 NATURE COMMUNICATIONS | 5:4883 |DOI: 10.1038/ncomms5883 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


genomic imputation on available HapMap Phase 2 genotypes with MACH32 or
IMPUTE33, using the appropriate ancestry groups as templates.

Each study applied stringent quality control procedures before imputation,
including minor allele frequency cutoffs, Hardy–Weinberg equilibrium, genotypic
success rate, mendelian inconsistencies, exclusion of individuals with 45% shared
ancestry (exception made for family-based cohorts in which due adjustment for
family relationship was made) and removal of all individuals whose ancestry as
determined through genetic analysis did not match the prevailing ancestry group of
the corresponding cohort (Supplementary Note). SNPs with low imputation quality
were filtered using metrics specific to the imputation method and thresholds used
in previous GWAS analyses. For each cohort, only SNPs with imputation quality
scores 40.6 (proper-info of IMPUTE) or R240.6 (MACH) were included into the
meta-analysis.

Statistical analysis. In subjects drawn from their respective populations in which
the prevalence of glaucomatous changes is relatively low, the correlation between
left and right eye is high34. Therefore, we used the mean VCDR of both eyes. In
cases of missing or unreliable data for one eye, data of the other eye was taken.
Each individual study did a linear regression model between the VCDR and the
SNPs under the assumption of an additive model for the effect of the risk allele.
Analyses were adjusted for age, sex and the first two principal components (for
population-based studies) or family structure (for family-based studies). Secondary
analyses were done with adjustments for disc area or spherical equivalent. In the
Rotterdam Studies, we calculated the phenotypic variability explained by the new
loci, and explained by all common SNPs using the ‘Genome-wide Complex Trait
Analysis’ tool35,36.

We performed an inverse variance weighted fixed-effect meta-analysis. This was
performed with METAL software37. P values for the association results were
calculated by using the z-statistic. P values for heterogeneity were calculated by
using the Cochran’s Q-test for heterogeneity. In addition to this, I2 values were
calculated to assess heterogeneity38. Fst values were calculated to assess the genetic
variation due to subdivision of populations. All study effect estimates were
corrected using genomic control and were oriented to the positive strand of the
NCBI Build 36 reference sequence of the human genome, which was the genomic
build on which most available genotyping platforms were based. Coordinates and
further annotations for the SNPs were converted into Build 37, the most recent
version of the available builds at the time of this study.

In stage 1, a P value o5.0� 10� 8 (the genome-wide threshold of association)
was considered significant. In stage 2, a P value o0.05 was considered significant.
Manhattan, regional and forest plots were made using R39, LocusZoom40 and Stata/
SE 12.0 (StataCorp LP, College Station, TX, USA).

Risk-score models. In five case-control studies, a weighted genetic risk score per
individual was calculated. Standardized regression coefficients were used as
weighting factor. The weighted risk scores were divided into quintiles. Odds ratios
were calculated for each quintile, using the first quintile as a reference.

Gene-based test using VEGAS. There are different gene-based tests of which
VEGAS is one of the most powerful tests41. We therefore performed gene-based
testing using VEGAS software17, which combines the test statistics of all SNPs
present within and 50 kb upstream/downstream of each gene. LD between the
markers is accounted for through simulations from the multivariate normal
distribution, based on estimates of LD from reference populations. Since Asian and
European ancestry populations show different LD patterns, we performed separate
gene-based tests for each population. Hapmap 2 CEU population was used as a
reference to calculate LD for European ancestry data, whereas Hapmap 2 JPT and
CHB combined population was used as a reference for Asian ancestry data. After
calculation of gene-based test statistics for Asian and European ancestry
populations separately, meta-analysis was conducted using Fisher’s method for
combining P values. VEGAS was applied to the summary data from the full VCDR
analysis (as in Table 1) and to three of the POAG data sets; ANZRAG,
Massachusetts Eye and Ear Infirmary glaucoma clinic and Glaucoma Genes and
Environment (Supplementary Note).

Pathway-analysis using pathway-VEGAS. Pre-specified pathways from the Gene
Ontology database with size ranging in 5–500 genes were used to perform pathway
analysis. Pathway-VEGAS combines VEGAS gene-based test statistics based on pre-
specified biological pathways18. Pathway P values were computed by summing w2-test
statistics derived from VEGAS P values. Empirical ‘VEGAS-pathway’ P values for each
pathway were computed by comparing the real-data-summed w2-test statistics with
500,000 simulations where the relevant number (as per size of pathway) of randomly
drawn w2-test statistics was summed. To ensure clusters of genes did not adversely
affect results, within each pathway, gene sets were pruned such that each gene was
4500 kb from all other genes in the pathway. Where required, all but one of the
clustered genes was dropped at random when genes were clustered. Pathway-VEGAS
was performed separately for European and Asian ancestry data sets. Meta-analysis
was conducted using Fisher’s method for combining P values.

Regulatory functions. We used the ENCyclopedia Of DNA Elements42 data in the
UCSC Genome Browser43 to look at DNase I hypersensitivity sites and other
functional elements.

Gene expression in human eye tissue. We examined the expression of genes that
reached significance in the individual SNP-based test or gene-based test. We used
published literature or human ocular gene expression databases (Supplementary
Tables 15 and 16).
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