57 research outputs found

    Bumblebees under the midnight sun - Monitoring circadian rhythms of bumblebees under continuous daylight, using radio frequency identification (RFID)

    Get PDF
    Circadian rhythms enable organisms to anticipate and to prepare for predictable changes in their environment. Most previous studies on circadian rhythms focused on solitary animals. However, in social insects, the colony as a superorganism has a foraging rhythm aligned to the patterns of resource availability. Within this colony rhythm, the activity patterns of individuals are embedded. In temperate regions bumblebee foragers show strong circadian rhythms that adjust their foraging activity to the changing light conditions in the course of the day. But what about circadian foraging patterns under continuous daylight? One would assume that the colony as a whole extends its foraging activity over the whole 24 hours of a day under such light conditions to maximise colony growth. To answer this question four colonies of _Bombus terrestris terrestris_ have been set up in north-western Finland (Kilpisjärvi Biological Station, 270km north of the Arctic Circle) between 20/06/07 and 18/07/07. During that time period the sun is always above the horizon in that area. Each worker of each colony was fitted with a small RFID tag, allowing to continuously monitor the foraging activity of each individual worker for the whole duration of the experiment. Against the hypothesis the foragers still showed strong circadian rhythms and ceased their activity from about 0000h until about 0600h each day

    Winter Active Bumblebees (Bombus terrestris) Achieve High Foraging Rates in Urban Britain

    Get PDF
    Background: Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? Methodology/Principal Findings: To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. Conclusions/Significance: B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinato

    Bird pollination of Canary Island endemic plants

    Get PDF
    The Canary Islands are home to a guild of endemic, threatened bird pollinated plants. Previous work has suggested that these plants evolved floral traits as adaptations to pollination by flower specialist sunbirds, but subsequently they appear to be have co-opted passerine birds as sub-optimal pollinators. To test this idea we carried out a quantitative study of the pollination biology of three of the bird pollinated plants, Canarina canariensis (Campanulaceae), Isoplexis canariensis (Veronicaceae) and Lotus berthelotii (Fabaceae), on the island of Tenerife. Using colour vision models, we predicted the detectability of flowers to bird and bee pollinators. We measured pollinator visitation rates, nectar standing crops, as well as seed set and pollen removal and deposition. These data showed that the plants are effectively pollinated by non-flower specialist passerine birds that only occasionally visit flowers. The large nectar standing crops and extended flower longevities (>10days) of Canarina and Isoplexis suggests that they have evolved bird pollination system that effectively exploits these low frequency non-specialist pollen vectors and is in no way suboptimal. Seed set in two of the three species was high, and was significantly reduced or zero in flowers where pollinator access was restricted. In L. berthelotii, however, no fruit set was observed, probably because the plants were self incompatible horticultural clones of a single genet. We also show that, while all three species are easily detectable for birds, the orange Canarina and the red Lotus (but less so the yellow-orange Isoplexis) should be difficult to detect for insect pollinators without specialised red receptors, such as bumblebees. Contrary to expectations if we accept that the flowers are primarily adapted to sunbird pollination, the chiffchaff (Phylloscopus canariensis) was an effective pollinator of these species

    Unravelling the mechanisms of trapline foraging in bees

    Get PDF
    International audienceAddendum to: Lihoreau M, Raine NE, Reynolds AM, Stelzer RJ, Lim KS, Smith AD, et al.; Addendum to. Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes of bumblebees over large spatial scales. PLoS Biol 2012; 10:e1001392; PMID:23049479; http://dx.doi. org/10.1371/journal.pbio.1001392. T rapline foraging (repeated sequential visits to a series of feeding locations) is a taxonomically widespread but poorly understood behavior. Investigating these routing strategies in the field is particularly difficult, as it requires extensive tracking of animal movements to retrace their complete foraging history. In a recent study, we used harmonic radar and motion-triggered video cameras to track bumblebees foraging between artificial flowers in a large open field. We describe how all bees gradually developed a near optimal trapline to link all flowers and have identified a simple learning heuristic capable of replicating this optimization behavior. Our results provide new perspectives to clarify the sequence of decisions made by pollinat-ing insects during trapline foraging, and explore how spatial memory is organized in their small brains. " I have always regretted that I did not mark the bees by attaching bits of cotton wool or eiderdown to them with rubber, because this would have made it much easier to follow their paths. " Charles Darwin

    Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the permanent daylight conditions north of the Arctic circle, there is a unique opportunity for bumblebee foragers to maximise intake, and therefore colony growth, by remaining active during the entire available 24-h period. We tested the foraging rhythms of bumblebee (<it>Bombus terrestris </it>and <it>B. pascuorum</it>) colonies in northern Finland during the summer, when the sun stays above the horizon for weeks. We used fully automatic radio-frequency identification to monitor the foraging activity of more than 1,000 workers and analysed their circadian foraging rhythms.</p> <p>Results</p> <p>Foragers did not use the available 24-h foraging period but exhibited robust diurnal rhythms instead. A mean of 95.2% of the tested <it>B. terrestris </it>workers showed robust diurnal rhythms with a mean period of 23.8 h. Foraging activity took place mainly between 08:00 and 23:00, with only low or almost no activity during the rest of the day. Activity levels increased steadily during the morning, reached a maximum around midday and decreased again during late afternoon and early evening. Foraging patterns of native <it>B. pascuorum </it>followed the same temporal organisation, with the foraging activity being restricted to the period between 06:00 and 22:00.</p> <p>Conclusions</p> <p>The results of the present study indicate that the circadian clock of the foragers must have been entrained by some external cue, the most prominent being daily cycles in light intensity and temperature. Daily fluctuations in the spectral composition of light, especially in the UV range, could also be responsible for synchronising the circadian clock of the foragers under continuous daylight conditions.</p

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore