61 research outputs found

    A weakly correlated Fermi liquid state with a small Fermi surface in lightly doped Sr3_3Ir2_2O7_7

    Get PDF
    We characterize the electron doping evolution of (Sr1x_{1-x}Lax_x)3_3Ir2_2O7_7 by means of angle-resolved photoemission. Concomitant with the metal insulator transition around x0.05x\approx0.05 we find the emergence of coherent quasiparticle states forming a closed small Fermi surface of volume 3x/23x/2, where xx is the independently measured La concentration. The quasiparticle weight ZZ remains large along the entire Fermi surface, consistent with the moderate renormalization of the low-energy dispersion. This indicates a conventional, weakly correlated Fermi liquid state with a momentum independent residue Z0.5Z\approx0.5 in lightly doped Sr3_3Ir2_2O$_7&.Comment: 5 pages, 4 figure

    High Survivability of Micrometeorites on Mars: Sites With Enhanced Availability of Limiting Nutrients

    Get PDF
    NASA's strategy in exploring Mars has been to follow the water, because water is essential for life, and it has been found that there are many locations where there was once liquid water on the surface. Now perhaps, to narrow down the search for life on a barren basalt‐dominated surface, there needs to be a refocusing to a strategy of “follow the nutrients.” Here we model the entry of metallic micrometeoroids through the Martian atmosphere, and investigate variations in micrometeorite abundance at an analogue site on the Nullarbor Plain in Australia, to determine where the common limiting nutrients available in these (e.g., P, S, Fe) become concentrated on the surface of Mars. We find that dense micrometeorites are abundant in a range of desert environments, becoming concentrated by aeolian processes into specific sites that would be easily investigated by a robotic rover. Our modeling suggests that micrometeorites are currently far more abundant on the surface of Mars than on Earth, and given the far greater abundance of water and warmer conditions on Earth and thus much more active weather system, this was likely true throughout the history of Mars. Because micrometeorites contain a variety of redox sensitive minerals including FeNi alloys, sulfide and phosphide minerals, and organic compounds, the sites where these become concentrated are far more nutrient rich, and thus more compatible with chemolithotrophic life than most of the Martian surface

    Investigating the uptake, effectiveness and safety of COVID-19 vaccines : protocol for an observational study using linked UK national data

    Get PDF
    Funding: This research is part of the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (HDRUK2020.146). EAVE II is funded by the Medical Research Council (MC_PC_19075) and supported by the Scottish Government. This work is supported by BREATHE - The Health Data Research Hub for Respiratory Health (MC_PC_19004). BREATHE is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. ConCOV is supported by the Medical Research Council (MR/V028367/1); Health Data Research UK (HDR-9006) which receives its funding from the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust; and Administrative Data Research UK which is funded by the Economic and Social Research Council (grant ES/S007393/1).Introduction : The novel coronavirus SARS-CoV-2, which emerged in December 2019, has caused millions of deaths and severe illness worldwide. Numerous vaccines are currently under development of which a few have now been authorised for population-level administration by several countries. As of 20 September 2021, over 48 million people have received their first vaccine dose and over 44 million people have received their second vaccine dose across the UK. We aim to assess the uptake rates, effectiveness, and safety of all currently approved COVID-19 vaccines in the UK. Methods and analysis : We will use prospective cohort study designs to assess vaccine uptake, effectiveness and safety against clinical outcomes and deaths. Test-negative case–control study design will be used to assess vaccine effectiveness (VE) against laboratory confirmed SARS-CoV-2 infection. Self-controlled case series and retrospective cohort study designs will be carried out to assess vaccine safety against mild-to-moderate and severe adverse events, respectively. Individual-level pseudonymised data from primary care, secondary care, laboratory test and death records will be linked and analysed in secure research environments in each UK nation. Univariate and multivariate logistic regression models will be carried out to estimate vaccine uptake levels in relation to various population characteristics. VE estimates against laboratory confirmed SARS-CoV-2 infection will be generated using a generalised additive logistic model. Time-dependent Cox models will be used to estimate the VE against clinical outcomes and deaths. The safety of the vaccines will be assessed using logistic regression models with an offset for the length of the risk period. Where possible, data will be meta-analysed across the UK nations. Ethics and dissemination : We obtained approvals from the National Research Ethics Service Committee, Southeast Scotland 02 (12/SS/0201), the Secure Anonymised Information Linkage independent Information Governance Review Panel project number 0911. Concerning English data, University of Oxford is compliant with the General Data Protection Regulation and the National Health Service (NHS) Digital Data Security and Protection Policy. This is an approved study (Integrated Research Application ID 301740, Health Research Authority (HRA) Research Ethics Committee 21/HRA/2786). The Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub meets NHS Digital’s Data Security and Protection Toolkit requirements. In Northern Ireland, the project was approved by the Honest Broker Governance Board, project number 0064. Findings will be made available to national policy-makers, presented at conferences and published in peer-reviewed journals.Publisher PDFPeer reviewe

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects

    Get PDF
    Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs

    Nutrition for the ageing brain: towards evidence for an optimal diet

    Get PDF
    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline

    Generational Association Studies of Dopaminergic Genes in Reward Deficiency Syndrome (RDS) Subjects: Selecting Appropriate Phenotypes for Reward Dependence Behaviors

    Get PDF
    Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific “reward” phenotype may be a paradigm shift in future association and linkage studies involving dopaminergic polymorphisms and other neurotransmitter gene candidates

    Virological failure and development of new resistance mutations according to CD4 count at combination antiretroviral therapy initiation

    Get PDF
    Objectives: No randomized controlled trials have yet reported an individual patient benefit of initiating combination antiretroviral therapy (cART) at CD4 counts > 350 cells/μL. It is hypothesized that earlier initiation of cART in asymptomatic and otherwise healthy individuals may lead to poorer adherence and subsequently higher rates of resistance development. Methods: In a large cohort of HIV-positive individuals, we investigated the emergence of new resistance mutations upon virological treatment failure according to the CD4 count at the initiation of cART. Results: Of 7918 included individuals, 6514 (82.3%), 996 (12.6%) and 408 (5.2%) started cART with a CD4 count ≤ 350, 351-499 and ≥ 500 cells/μL, respectively. Virological rebound occurred while on cART in 488 (7.5%), 46 (4.6%) and 30 (7.4%) with a baseline CD4 count ≤ 350, 351-499 and ≥ 500 cells/μL, respectively. Only four (13.0%) individuals with a baseline CD4 count > 350 cells/μL in receipt of a resistance test at viral load rebound were found to have developed new resistance mutations. This compared to 107 (41.2%) of those with virological failure who had initiated cART with a CD4 count < 350 cells/μL. Conclusions: We found no evidence of increased rates of resistance development when cART was initiated at CD4 counts above 350 cells/μL. HIV Medicin
    corecore