326 research outputs found
Environmental pollution is associated with increased risk of psychiatric disorders in the US and Denmark
The search for the genetic factors underlying complex neuropsychiatric disorders has proceeded apace in the past decade. Despite some advances in identifying genetic variants associated with psychiatric disorders, most variants have small individual contributions to risk. By contrast, disease risk increase appears to be less subtle for disease-predisposing environmental insults. In this study, we sought to identify associations between environmental pollution and risk of neuropsychiatric disorders. We present exploratory analyses of 2 independent, very large datasets: 151 million unique individuals, represented in a United States insurance claims dataset, and 1.4 million unique individuals documented in Danish national treatment registers. Environmental Protection Agency (EPA) county-level environmental quality indices (EQIs) in the US and individual-level exposure to air pollution in Denmark were used to assess the association between pollution exposure and the risk of neuropsychiatric disorders. These results show that air pollution is significantly associated with increased risk of psychiatric disorders. We hypothesize that pollutants affect the human brain via neuroinflammatory pathways that have also been shown to cause depression-like phenotypes in animal studies
Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10 -6) and rs8057927 in CDH13 (P=1.39 × 10 -5). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10 -7). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10 -7). This signal was replicated in the follow-up analysis (P=2.3 × 10 -2). Significant interaction with maternal CMV infection was found for rs7902091 (P SNP × CMV =7.
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Applications and efficiencies of the first cat 63K DNA array
The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array\u2019s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50\u20131,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder
Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector
A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model
Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector
A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
- …