105 research outputs found

    Chemotherapy-induced apoptosis, autophagy and cell cycle arrest are key drivers of synergy in chemo-immunotherapy of epithelial ovarian cancer

    Get PDF
    Epithelial ovarian cancer (EOC) is the most lethal of all gynecological malignancies in the UK. Recent evidence has shown that there is potential for immunotherapies to be successful in treating this cancer. We have previously shown the effective application of combinations of traditional chemotherapy and CAR (chimeric antigen receptor) T cell immunotherapy in in vitro and in vivo models of EOC. Platinum-based chemotherapy synergizes with ErbB-targeted CAR T cells (named T4), significantly reducing tumor burden in mice. Here, we show that paclitaxel synergizes with T4 as well, and look into the mechanisms behind the effectiveness of chemo-immunotherapy in our system. Impairment of caspase activity using pan-caspase inhibitor Z-VAD reveals this chemotherapy-induced apoptotic pathway as an essential factor in driving synergy. Mannose-6-phosphate receptor-mediated autophagy and the arrest of cell cycle in G2/M are also shown to be induced by chemotherapy and significantly contributing to the synergy. Increased expression of PD-1 on T4 CAR T cells occurred when these were in culture with ovarian tumor cells; on the other hand, EOC cell lines showed increased PD-L1 expression following chemotherapy treatment. These findings provided a rationale to look into testing PD-1 blockade in combination with paclitaxel and T4 immunotherapy. Combination of these three agents in mice resulted in significant reduction of tumor burden, compared to each treatment alone. In conclusion, the mechanism driving synergy in chemo-immunotherapy of EOC is multifactorial. A deeper understanding of such process is needed to better design combination therapies and carefully stratify patients

    Exploring the key drivers behind the adoption of mobile banking services

    Get PDF
    This research examines the main drivers behind the adoption of mobile banking, a concept that has revolutionized the day-to-day activities of humans. A review of relevant literature on the topic, leads us toward testing the following key hypotheses: consumers are adopting mobile banking due to the perceived usefulness and benefits associated with the concept; and consumers are adopting mobile banking due to technological advances meaning increased access to the mobile phone devices. We published an online questionnaire on Amazon Mechanical Turk to obtain responses from Internet users. A dominating proportion of participants highlighted how mobile banking is a concept that they adopted between three and 5 years ago, showing just how recently mobile banking took off. The results also showed a number of links between the study’s research hypotheses and the adoption of mobile banking. The overall result of the study shows online banking as a concept that is influenced by a number of both internal and external factors. No single factor plays a dominating force in pushing retail bankers to adopt mobile banking, with it instead being a culmination of numerous different factors. The recent introduction of mobile banking is made seemingly apparent, as is the increasing susceptibility to change in the near future. Subsequently, countless opportunities for further academic research are likely to arise

    ‘Better late than never’: the interplay between green technology and age for firm growth

    Get PDF
    This paper investigates the relationship between green/non-green technologies and firm growth. By combining the literature on eco-innovations, industrial organisation and entrepreneurial studies, we examine the dependence of this relationship on the pace at which firms grow and the age of the firm. From a dataset of 5498 manufacturing firms in Italy for the period of 2000–2008, longitudinal fixed effects quantile models are estimated, in which the firm’s age is set to moderate the effects of green and non-green patents on employment growth. We find that the positive effect of green technologies on growth is greater than that of non-green technologies. However, this result does not apply to struggling and rapidly growing firms. With fast-growing (above the median) firms, age moderates the growth effect of green technologies. Inconsistent with the extant literature, this moderation effect is positive: firm experience appears important for the growth benefits of green technologies, possibly relative to the complexity of their management

    Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus

    Get PDF
    The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes

    DNA microarray data integration by ortholog gene analysis reveals potential molecular mechanisms of estrogen-dependent growth of human uterine fibroids

    Get PDF
    BACKGROUND: Uterine fibroids or leiomyoma are a common benign smooth muscle tumor. The tumor growth is well known to be estrogen-dependent. However, the molecular mechanisms of its estrogen-dependency is not well understood. METHODS: Differentially expressed genes in human uterine fibroids were either retrieved from published papers or from our own statistical analysis of downloaded array data. Probes for the same genes on different Affymetrix chips were mapped based on probe comparison information provided by Affymetrix. Genes identified by two or three array studies were submitted for ortholog analysis. Human and rat ortholog genes were identified by using ortholog gene databases, HomoloGene and TOGA and were confirmed by synteny analysis with MultiContigView tool in the Ensembl genome browser. RESULTS: By integrated analysis of three recently published DNA microarray studies with human tissue, thirty-eight genes were found to be differentially expressed in the same direction in fibroid compared to adjacent uterine myometrium by at least two research groups. Among these genes, twelve with rat orthologs were identified as estrogen-regulated from our array study investigating uterine expression in ovariectomized rats treated with estrogen. Functional and pathway analyses of the twelve genes suggested multiple molecular mechanisms for estrogen-dependent cell survival and tumor growth. Firstly, estrogen increased expression of the anti-apoptotic PCP4 gene and suppressed the expression of growth inhibitory receptors PTGER3 and TGFBR2. Secondly, estrogen may antagonize PPARγ signaling, thought to inhibit fibroid growth and survival, at two points in the PPAR pathway: 1) through increased ANXA1 gene expression which can inhibit phospholipase A2 activity and in turn decrease arachidonic acid synthesis, and 2) by decreasing L-PGDS expression which would reduce synthesis of PGJ2, an endogenous ligand for PPARγ. Lastly, estrogen affects retinoic acid (RA) synthesis and mobilization by regulating expression of CRABP2 and ALDH1A1. RA has been shown to play a significant role in the development of uterine fibroids in an animal model. CONCLUSION: Integrated analysis of multiple array datasets revealed twelve human and rat ortholog genes that were differentially expressed in human uterine fibroids and transcriptionally responsive to estrogen in the rat uterus. Functional and pathway analysis of these genes suggest multiple potential molecular mechanisms for the poorly understood estrogen-dependent growth of uterine fibroids. Fully understanding the exact molecular interactions among these gene products requires further study to validate their roles in uterine fibroids. This work provides new avenues of study which could influence the future direction of therapeutic intervention for the disease

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Corticosteroids in ophthalmology : drug delivery innovations, pharmacology, clinical applications, and future perspectives

    Get PDF

    Cobalt, nickel, and copper ion-exchanged on heterocyclic amine-intercalated titanium hydrogenphosphate compounds

    No full text
    Crystalline alpha-titanium hydrogenphosphate with a maximum theoretical ion-exchange capacity of 7.60 mmol g(-1) had aromatic organic 3- and 4-aminopyridine molecules inserted into the free lamellar space at 2.32 and 3.14 mmol g(-1). This expands the interlamellar distance from 760 to 1193 and 1261 pm, respectively. The effectiveness of these new matrices for exchanging cations at the solid/liquid interface dpends on the intercalated monoprotonated amines and gives cation-exchange order Cu2+ > Co2+ > Ni2+, not only from individual cationic solutions, but also when an equimolar mixture of these cations is employed. For the first procedure, copper had the most exchange ability giving 2.42 and 2.26 mmol g(-1). From the cation mixture, it presented ion-exchange capacities (1.91 and 1.80 mmol g(-1)), that are nearly four times that obtained for cobalt (0.560 and 0.384 mmol g(-1)). No significant values were obtained for nickel (0.084 and 0.039 mmol g(-1)) when present in the mixture. The X-ray diffraction patterns for copper-containing materials showed a reasonable increase of disorganization as the ion-exchange progressed, to change the original crystalline structure to an amorphous form. Carbon and nitrogen elemental analyses demonstrated a decrease in the amount of amine after the ion-exchange process, when compared to the respective precursors, reflecting successive displacement of the inserted organic molecule in the inorganic matrix. The favorable exchanging mechanism reaction seems to be associated with the diffusion of the cations inside the intercalated lamellar compounds.47155441544
    corecore