59 research outputs found

    High loading of polygenic risk for ADHD in children with comorbid aggression

    Get PDF
    Objective: Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method: Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results: Polygenic risk for ADD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by,the aggression items. Conclusions: Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity

    The Iceland Greenland Seas Project

    Get PDF
    A coordinated atmosphere-ocean research project, centered on a rare wintertime field campaign to the Iceland and Greenland Seas, seeks to determine the location and causes of dense water formation by cold-air outbreaks. The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere-ocean research program investigating climate processes in the source region of the densest waters of the Atlantic Meridional Overturning Circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region – including a research vessel, a research aircraft, moorings, sea gliders, floats and a meteorological buoy. A remarkable feature of the field campaign was the highly-coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal-ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the lifecycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere-ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modelling activities underway

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder

    Get PDF
    Background Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is 2-7 times more common in males than females. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk in female cases. Methods We analyzed genome-wide autosomal common variants from the Psychiatric Genomics Consortium and iPSYCH Project (20,183 cases, 35,191 controls) and Swedish populationregister data (N=77,905 cases, N=1,874,637 population controls). Results Genetic correlation analyses using two methods suggested near complete sharing of common variant effects across sexes, with rg estimates close to 1. Analyses of population data, however, indicated that females with ADHD may be at especially high risk of certain comorbid developmental conditions (i.e. autism spectrum disorder and congenital malformations), potentially indicating some clinical and etiological heterogeneity. Polygenic risk score (PRS) analysis did not support a higher burden of ADHD common risk variants in female cases (OR=1.02 [0.98-1.06], p=0.28). In contrast, epidemiological sibling analyses revealed that the siblings of females with ADHD are at higher familial risk of ADHD than siblings of affected males (OR=1.14, [95% CI: 1.11-1.18], p=1.5E-15). Conclusions Overall, this study supports a greater familial burden of risk in females with ADHD and some clinical and etiological heterogeneity, based on epidemiological analyses. However, molecular genetic analyses suggest that autosomal common variants largely do not explain the sex bias in ADHD prevalence

    Recombinant factor VIIa as last-resort treatment of desperate haemorrhage.

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.Studies are inconclusive regarding clinical outcomes after administration of recombinant activated coagulation factor VII (rFVIIa) during severe haemorrhage. The circumstances encountered during desperate haemorrhage make it difficult to include the most critically ill patients that could possibly benefit the most from such treatment into randomized controlled trials. We report our experience with rFVIIa as last-resort treatment of desperate haemorrhage when all standard treatment has failed. Hospital charts of all consecutive patients treated with rFVIIa for desperate non-haemophilic bleeding over a 10-year period at the single institution administering rFVIIa were surveyed for treatment indications, clinical outcome, transfusion need and coagulation profiles. Fifty-five rFVIIa treatment occasions of desperate bleeding were identified in 54 patients (median age 54 years). A single rFVIIa dose was used in 86%, and haemorrhage was considered effectively contained by immediate clinical response on 81% of occasions. Overall, 38 patients (71%) survived for over 30 days. Two thromboembolic events occurred (3.6%). The 24-h mortality in 45 rFVIIa immediate clinical responders and 10 non-responders was 2% and 50%, respectively (P = 0.0004), and the 30-day mortality was 25% and 60%, respectively (P = 0.05). Blood product use decreased with rFVIIa (P < 0.01) as did the prothrombin time (20.0-13.3 s, P < 0.0001). The majority of unselected consecutive patients receiving rFVIIa as last-resort treatment for desperate haemorrhage were considered to have immediate clinical response as well as reduced transfusion requirements and correction of coagulation parameters. An immediate clinical response to rFVIIa may possibly be predictive of survival.Landspitali University Hospital Scientific Foundation
    corecore