266 research outputs found

    Reply to Bassetti et al.

    Get PDF
    published_or_final_versio

    Increase in methicillin-resistant Staphylococcus aureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome

    Get PDF
    Background. An outbreak of severe acute respiratory syndrome (SARS) occurred in our 22-bed intensive care unit (ICU; Prince of Wales Hospital, Hong Kong, HKSAR, China) from 12 March to 31 May 2003, when only patients with SARS were admitted. This period was characterized by the upgrading of infection control precautions, which included the wearing of gloves and gowns all the time, an extensive use of steroids, and a change in antibiotic prescribing practices. The pattern of endemic pathogenic organisms, the rates of acquisition of methicillin-resistant Staphylococcus aureus (MRSA), and the rates of ventilator-associated pneumonia (VAP) were compared with those of the pre-SARS and post-SARS periods. Methods. Data on pathogenic isolates were obtained from the microbiology department (Prince of Wales Hospital). Data on MRSA acquisition and VAP rates were collected prospectively. MRSA screening was performed for all ICU patients. A case of MRSA carriage was defined as an instance in which MRSA was recovered from any site in a patient, and cases were classified as imported or ICU-acquired if the first MRSA isolate was recovered within 72 h of ICU admission or after 72 h in the ICU, respectively. Results. During the SARS period in the ICU, there was an increase in the rate of isolation of MRSA and Stenotrophomonas and Candida species but a disappearance of Pseudomonas and Klebsiella species. The MRSA acquisition rate was also increased: it was 3.53% (3.53 cases per 100 admissions) during the pre-SARS period, 25.30% during the SARS period, and 2.21% during the post-SARS period (P < .001). The VAP rate was high, at 36.5 episodes per 1000 ventilator-days, and 47% of episodes were caused by MRSA. Conclusions. A SARS outbreak in the ICU led to changes in the pathogen pattern and the MRSA acquisition rate. The data suggest that MRSA cross-transmission may be increased if gloves and gowns are worn all the time.published_or_final_versio

    Role of cardiac mitofusins in cardiac conduction following simulated ischemia–reperfusion

    Get PDF
    Mitochondrial dysfunction induced by acute cardiac ischemia–reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis

    Smart Phone, Smart Science: How the Use of Smartphones Can Revolutionize Research in Cognitive Science

    Get PDF
    Investigating human cognitive faculties such as language, attention, and memory most often relies on testing small and homogeneous groups of volunteers coming to research facilities where they are asked to participate in behavioral experiments. We show that this limitation and sampling bias can be overcome by using smartphone technology to collect data in cognitive science experiments from thousands of subjects from all over the world. This mass coordinated use of smartphones creates a novel and powerful scientific “instrument” that yields the data necessary to test universal theories of cognition. This increase in power represents a potential revolution in cognitive science

    Uncovering Genes with Divergent mRNA-Protein Dynamics in Streptomyces coelicolor

    Get PDF
    Many biological processes are intrinsically dynamic, incurring profound changes at both molecular and physiological levels. Systems analyses of such processes incorporating large-scale transcriptome or proteome profiling can be quite revealing. Although consistency between mRNA and proteins is often implicitly assumed in many studies, examples of divergent trends are frequently observed. Here, we present a comparative transcriptome and proteome analysis of growth and stationary phase adaptation in Streptomyces coelicolor, taking the time-dynamics of process into consideration. These processes are of immense interest in microbiology as they pertain to the physiological transformations eliciting biosynthesis of many naturally occurring therapeutic agents. A shotgun proteomics approach based on mass spectrometric analysis of isobaric stable isotope labeled peptides (iTRAQ™) enabled identification and rapid quantification of approximately 14% of the theoretical proteome of S. coelicolor. Independent principal component analyses of this and DNA microarray-derived transcriptome data revealed that the prominent patterns in both protein and mRNA domains are surprisingly well correlated. Despite this overall correlation, by employing a systematic concordance analysis, we estimated that over 30% of the analyzed genes likely exhibited significantly divergent patterns, of which nearly one-third displayed even opposing trends. Integrating this data with biological information, we discovered that certain groups of functionally related genes exhibit mRNA-protein discordance in a similar fashion. Our observations suggest that differences between mRNA and protein synthesis/degradation mechanisms are prominent in microbes while reaffirming the plausibility of such mechanisms acting in a concerted fashion at a protein complex or sub-pathway level

    Peptide Bβ15-42 Preserves Endothelial Barrier Function in Shock

    Get PDF
    Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bß15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bß15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bß15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bß15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bß15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bß15-42 is confirmed in Fyn−/− mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bß15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock

    Oncoproteomic Analysis Reveals Co-Upregulation of RELA and STAT5 in Carboplatin Resistant Ovarian Carcinoma

    Get PDF
    Ovarian cancer is one of the most lethal types of female malignancy. Although most patients are initially responsive to platinum-based chemotherapy, almost all develop recurrent chemoresistant tumors and succumb to their diseases. Elucidating the pathogenesis underlying drug resistance is fundamental to the development of new therapeutics, leading to improved clinical outcomes in these patients.We compared the proteomes of paired primary and recurrent post-chemotherapy ovarian high-grade serous carcinomas from nine ovarian cancer patients using CIEF/Nano-RPLC coupled with ESI-Tandem MS. As compared to their primary tumors, more than half of the recurrent tumors expressed higher levels of several proteins including CP, FN1, SYK, CD97, AIF1, WNK1, SERPINA3, APOD, URP2, STAT5B and RELA (NF-kappaB p65), which were also validated by quantitative RT-PCR. Based on shRNA screening for the upregulated genes in in vitro carboplatin-resistant cells, we found that simultaneous knockdown of RELA and STAT5B was most effective in sensitizing tumor cells for carboplatin treatment. Similarly, the NF-kappaB inhibitor, BMS-345541, and the STAT5 inhibitor, Dasatinib, significantly enhanced cell sensitivity to carboplatin. Moreover, both RELA and STAT5 are known to bind to the promoter region of Bcl-X, regulating its promoter activity. In this regard, augmented Bcl-xL expression was detected in carboplatin-resistant cells. Combined ectopic expression of RELA and STAT5B enhanced Bcl-xL promoter activity while treatment with BMS-345541 and Dasatinib decreased it. Chromatin immunoprecipitation of the Bcl-X promoter region using a STAT5 antibody showed induction of RELA and STAT5 DNA-binding segments both in naïve cells treated with a high concentration of carboplatin as well as in carboplatin-resistant cells.Proteomic analysis identified RELA and STAT5 as two major proteins associated with carboplatin resistance in ovarian tumors. Our results further showed that NF-kappaB and STAT5 inhibitor could sensitize carboplatin-resistant cells and suggest that such inhibitors can be used to benefit patients with carboplatin-resistant recurrent ovarian cancer
    corecore