60 research outputs found

    Calibration of photomultiplier arrays

    Get PDF
    A method is described that allows calibration and assessment of the linearity of response of an array of photomultiplier tubes. The method does not require knowledge of the photomultiplier single photoelectron response model and uses science data directly, thus eliminating the need for dedicated data sets. In this manner all photomultiplier working conditions (e.g. temperature, external fields, etc.) are exactly matched between calibration and science acquisitions. This is of particular importance in low background experiments such as ZEPLIN-III, where methods involving the use of external light sources for calibration are severely constrained

    Limits on the spin-dependent WIMP-nucleon cross-sections from the first science run of the ZEPLIN-III experiment

    Get PDF
    We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Analysis of \sim450 kg\cdotdays fiducial exposure revealed a most likely signal of zero events, leading to a 90%-confidence upper limit on the pure WIMP-neutron cross-section of σn=1.8×102\sigma_n=1.8\times 10^{-2} pb at 55 GeV/c2c^2 WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn CD nucleon-nucleon potential were used for the odd-neutron isotopes 129^{129}Xe and 131^{131}Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction is much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of \sim2

    Measurement and simulation of the muon-induced neutron yield in lead

    Get PDF
    A measurement is presented of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (w.e.) and a mean muon energy of 260 GeV. The measurement exploits the delayed coincidences between muons and the radiative capture of induced neutrons in a highly segmented tonne scale plastic scintillator detector. Detailed Monte Carlo simulations reproduce well the measured capture times and multiplicities and, within the dynamic range of the instrumentation, the spectrum of energy deposits. By comparing measurements with simulations of neutron capture rates a neutron yield in lead of (View the MathML source) ×10-3 neutrons/muon/(g/cm2) has been obtained. Absolute agreement between simulation and data is of order 25%. Consequences for deep underground rare event searches are discussed

    Five views of a secret: does cognition change during middle adulthood?

    Full text link
    This study examined five aspects of change (or stability) in cognitive abilities in middle adulthood across a 12-year period. Data come from the Interdisciplinary Study on Adult Development. The sample consisted of N = 346 adults (43.8 years on average, 48.6% female). In total, 11 cognitive tests were administered to assess fluid and crystallized intelligence, memory, and processing speed. In a first series of analyses, strong measurement invariance was established. Subsequently, structural stability, differential stability, stability of divergence, absolute stability, and the generality of changes were examined. Factor covariances were shown to be equal across time, implying structural stability. Stability coefficients were around .90 for fluid and crystallized intelligence, and speed, indicating high, yet not perfect differential stability. The coefficient for memory was .58. Only in processing speed the variance increased across time, indicating heterogeneity in interindividual development. Significant mean-level changes emerged, with an increase in crystallized intelligence and decline in the other three abilities. A number of correlations among changes in cognitive abilities were significant, implying that cognitive change

    Comprehensive mRNA Expression Profiling Distinguishes Tauopathies and Identifies Shared Molecular Pathways

    Get PDF
    Background: Understanding the aetiologies of neurodegenerative diseases such as Alzheimer's disease (AD), Pick's disease (PiD), Progressive Supranuclear Palsy (PSP) and Frontotemporal dementia (FTD) is often hampered by the considerable clinical and molecular overlap between these diseases and normal ageing. The development of high throughput genomic technologies such as microarrays provide a new molecular tool to gain insight in the complexity and relationships between diseases, as they provide data on the simultaneous activity of multiple genes, gene networks and cellular pathways. Methodology/Principal Findings: We have constructed genome wide expression profiles from snap frozen post-mortem tissue from the medial temporal lobe of patients with four neurodegenerative disorders (5 AD, 5 PSP, 5 PiD and 5 FTD patients) and 5 control subjects. All patients were matched for age, gender, ApoE-e and MAPT (tau) haplotype. From all groups a total of 790 probes were shown to be differently expressed when compared to control individuals. The results from these experiments were then used to investigate the correlations between clinical, pathological and molecular findings. From the 790 identified probes we extracted a gene set of 166 probes whose expression could discriminate between these disorders and normal ageing. Conclusions/Significance: From genome wide expression profiles we extracted a gene set of 166 probes whose expression could discriminate between neurological disorders and normal ageing. This gene set can be further developed into an accurate microarray-based classification test. Furthermore, from this dataset we extracted a disease specific set of genes and identified two aging related transcription factors (FOXO1A and FOXO3A) as possible drug targets related to neurodegenerative disease

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore