113 research outputs found

    Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea

    Get PDF
    Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems

    Caries associated with orthodontic care part 2: management

    Get PDF
    It is recognized that wearing an orthodontic appliance increases the caries risk of the individual. The prevalence of demineralization has been reported to be as high as 73%. When demineralization occurs a number of treatments exist: fluoride application, acid microabrasion, casein phosphopeptide-amorphous calcium phosphate (CCP-ACP), resin infiltration and self-assembling peptides. Of these, topical fluoride has the most evidence to support its use. CPD/Clinical Relevance: Demineralization is the most common complication of orthodontic care. The clinician should understand how to manage this when it occurs

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    The VicGeneration study - a birth cohort to examine the environmental, behavioural and biological predictors of early childhood caries: background, aims and methods

    Get PDF
    Background Dental caries (decay) during childhood is largely preventable however it remains a significant and costly public health concern, identified as the most prevalent chronic disease of childhood. Caries in children aged less than five years (early childhood caries) is a rapid and progressive disease that can be painful and debilitating, and significantly increases the likelihood of poor child growth, development and social outcomes. Early childhood caries may also result in a substantial social burden on families and significant costs to the public health system. A disproportionate burden of disease is also experienced by disadvantaged populations. Methods/Design This study involves the establishment of a birth cohort in disadvantaged communities in Victoria, Australia. Children will be followed for at least 18 months and the data gathered will explore longitudinal relationships and generate new evidence on the natural history of early childhood caries, the prevalence of the disease and relative contributions of risk and protective biological, environmental and behavioural factors. Specifically, the study aims to: 1. Describe the natural history of early childhood caries (at ages 1, 6, 12 and 18 months), tracking pathways from early bacterial colonisation, through non-cavitated enamel white spot lesions to cavitated lesions extending into dentine. 2. Enumerate oral bacterial species in the saliva of infants and their primary care giver. 3. Identify the strength of concurrent associations between early childhood caries and putative risk and protective factors, including biological (eg microbiota, saliva), environmental (fluoride exposure) and socio-behavioural factors (proximal factors such as: feeding practices and oral hygiene; and distal factors such as parental health behaviours, physical health, coping and broader socio-economic conditions). 4. Quantify the longitudinal relationships between these factors and the development and progression of early childhood caries from age 1-18 months. Discussion There is currently a lack of research describing the natural history of early childhood caries in very young children, or exploring the interactions between risk and protective factors that extend to include contemporary measures of socio-behavioural factors. This study will generate knowledge about pathways, prevalence and preventive opportunities for early childhood caries, the most prevalent child health inequality

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    The Advantage of Standing Up to Fight and the Evolution of Habitual Bipedalism in Hominins

    Get PDF
    BACKGROUND: Many quadrupedal species stand bipedally on their hindlimbs to fight. This posture may provide a performance advantage by allowing the forelimbs to strike an opponent with the range of motion that is intrinsic to high-speed running, jumping, rapid braking and turning; the range of motion over which peak force and power can be produced. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that bipedal (i.e., orthograde) posture provides a performance advantage when striking with the forelimbs, I measured the force and energy produced when human subjects struck from "quadrupedal" (i.e., pronograde) and bipedal postures. Downward and upward directed striking energy was measured with a custom designed pendulum transducer. Side and forward strikes were measured with a punching bag instrumented with an accelerometer. When subjects struck downward from a bipedal posture the work was 43.70±12.59% (mean ± S.E.) greater than when they struck from a quadrupedal posture. Similarly, 47.49±17.95% more work was produced when subjects struck upward from a bipedal stance compared to a quadrupedal stance. Importantly, subjects did 229.69±44.19% more work in downward than upward directed strikes. During side and forward strikes the force impulses were 30.12±3.68 and 43.04±9.00% greater from a bipedal posture than a quadrupedal posture, respectively. CONCLUSIONS/SIGNIFICANCE: These results indicate that bipedal posture does provide a performance advantage for striking with the forelimbs. The mating systems of great apes are characterized by intense male-male competition in which conflict is resolved through force or the threat of force. Great apes often fight from bipedal posture, striking with both the fore- and hindlimbs. These observations, plus the findings of this study, suggest that sexual selection contributed to the evolution of habitual bipedalism in hominins

    Avant-garde and experimental music

    No full text

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
    corecore