8 research outputs found

    Examining the viability of the world’s busiest winter road to climate change using a process-based lake model

    Get PDF
    Winter roads play a vital role in linking communities and building economies in the northern high latitudes. With these regions warming two to three times faster than the global average, climate change threatens the long-term viability of these important seasonal transport routes. We examine how climate change will impact the world’s busiest heavy-haul winter road – the Tibbitt to Contwoyto Winter Road (TCWR) in northern Canada. The FLake freshwater lake model is used to project ice thickness for a lake at the start of the TCWR – first using observational climate data, and second using modelled future climate scenarios corresponding to varying rates of warming ranging from 1.5°C to 4°C above preindustrial temperatures. Our results suggest that 2°C warming could be a tipping point for the viability of the TCWR, requiring at best costly adaptation and at worst alternative forms of transportation. Containing warming to the more ambitious temperature target of 1.5°C pledged at the 2016 Paris Agreement may be the only way to keep the TCWR viable – albeit with a shortened annual operational season relative to present. More widely, we show that higher regional winter warming across much of the rest of Arctic North America threatens the long-term viability of winter roads at a continental scale. This underlines the importance of continued global efforts to curb greenhouse gas emissions to avoid many long-term and irreversible impacts of climate change

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Middle to late Pleistocene palaeoceanography inferred from ridge-furrow structures on the continental slope offshore Angola

    No full text
    3D seismic reflection data have been used to map 784 enigmatic ridge-furrow structures in water depths of 0.8–1.7 km offshore Angola. The structures are characterised by asymmetric ridges with intervening furrows, typically <0.5–5.5 km long, with a sinuous to bifurcating planform. The furrows are well-imaged on seismic profiles, and range from 60 to 80 m in width, up to 10 m in amplitude, and 0.1–1 km in wavelength. The furrow sets aggrade in a downslope direction and occur in arrays that have an internally consistent direction that is either parallel, or slightly diverging or converging. Two alternative origins are considered: (1) furrows that are dominantly erosional scours formed from seafloor-incising currents flowing parallel to the furrows, with the ridges a by-product of the erosion, or (2) the ridge-furrows are bottom-current generated dune-type sediment waves. The latter interpretation allows us to reconstruct a key component of the deepwater bottom-currents regime along this continental margin from the Middle Pleistocene to the present-day. The most likely transport agent responsible for the interpreted sediment waves is a palaeo-bottom-current regime with a flow direction toward the west-southwest/south-southwest, the same direction of the sediment wave migration. The palaeo-bottom currents would then be expected to have a very specific flow regime with 1 < Frmax < 2 and may originate from longshore currents cascading off the shelf, Congo Canyon distal overflows, breaking internal waves or a combination of these processes

    Glacial seismic geomorphology and Plio-Pleistocene ice sheet history offshore of northwest Europe

    Get PDF
    Plio-Pleistocene records of ice-rafted detritus suggest northwest European ice sheets regularly reached coastlines. However, these records provide limited insight on the frequency, extent, and dynamics of ice sheets delivering the detritus. Three-dimensional reflection seismic data of the northwest European glaciated margin have previously documented buried landforms that inform us on these uncertainties. This paper reviews and combines these existing records with new seismic geomorphological observations to catalogue landform occurrence along the European glaciated margin and considers how they relate to ice sheet history. The compilation shows Early Pleistocene ice sheets regularly advanced across the continental shelves. Early Pleistocene sea level reconstructions demonstrate lower magnitude fluctuations compared to the Middle-Late Pleistocene, and more extensive/frequent Early Pleistocene glaciation provides a possible mismatch with sea level reconstructions. This evidence is discussed with global records of glaciation to consider possible impacts on our wider understanding of Plio-Pleistocene climate changes, in particular how well Early Pleistocene sea level records capture ice sheet volume changes. Resolving such issues relies on how well landforms are dated, whether they can be correlated with other proxy datasets, and how accurately these proxies reconstruct the magnitudes of past climatic changes. Many questions about Pleistocene glaciation in Europe and elsewhere remain

    Exploring controls of the early and stepped deglaciation on the western margin of the British Irish Ice Sheet

    Get PDF
    New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast

    Appendicitis risk prediction models in children presenting with right iliac fossa pain (RIFT study): a prospective, multicentre validation study.

    No full text
    Background Acute appendicitis is the most common surgical emergency in children. Differentiation of acute appendicitis from conditions that do not require operative management can be challenging in children. This study aimed to identify the optimum risk prediction model to stratify acute appendicitis risk in children. Methods We did a rapid review to identify acute appendicitis risk prediction models. A prospective, multicentre cohort study was then done to evaluate performance of these models. Children (aged 5\u201315 years) presenting with acute right iliac fossa pain in the UK and Ireland were included. For each model, score cutoff thresholds were systematically varied to identify the best achievable specificity while maintaining a failure rate (ie, proportion of patients identified as low risk who had acute appendicitis) less than 5%. The normal appendicectomy rate was the proportion of resected appendixes found to be normal on histopathological examination. Findings 15 risk prediction models were identified that could be assessed. The cohort study enrolled 1827 children from 139 centres, of whom 630 (34\ub75%) underwent appendicectomy. The normal appendicectomy rate was 15\ub79% (100 of 630 patients). The Shera score was the best performing model, with an area under the curve of 0\ub784 (95% CI 0\ub782\u20130\ub786). Applying score cutoffs of 3 points or lower for children aged 5\u201310 years and girls aged 11\u201315 years, and 2 points or lower for boys aged 11\u201315 years, the failure rate was 3\ub73% (95% CI 2\ub70\u20135\ub72; 18 of 539 patients), specificity was 44\ub73% (95% CI 41\ub74\u201347\ub72; 521 of 1176), and positive predictive value was 41\ub74% (38\ub75\u201344\ub74; 463 of 1118). Positive predictive value for the Shera score with a cutoff of 6 points or lower (72\ub76%, 67\ub74\u201377\ub74) was similar to that of ultrasound scan (75\ub70%, 65\ub73\u201383\ub71). Interpretation The Shera score has the potential to identify a large group of children at low risk of acute appendicitis who could be considered for early discharge. Risk scoring does not identify children who should proceed directly to surgery. Medium-risk and high-risk children should undergo routine preoperative ultrasound imaging by operators trained to assess for acute appendicitis, and MRI or low-dose CT if uncertainty remains. Funding None
    corecore