43 research outputs found

    The Impact of Insulin Pump Therapy on Glycemic Profiles in Patients with Type 2 Diabetes: Data from the OpT2mise Study

    Get PDF
    Background: The OpT2mise randomized trial was designed to compare the effects of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) on glucose profiles in patients with type 2 diabetes. Research Design and Methods: Patients with glycated hemoglobin (HbA1c) levels of ≄8% (64 mmol/mol) and ≀12% (108 mmol/mol) despite insulin doses of 0.7-1.8 U/kg/day via MDI were randomized to CSII (n=168) or continued MDI (n=163). Changes in glucose profiles were evaluated using continuous glucose monitoring data collected over 6-day periods before and 6 months after randomization. Results: After 6 months, reductions in HbA1c levels were significantly greater with CSII (-1.1±1.2% [-12.0±13.1 mmol/mol]) than with MDI (-0.4±1.1% [-4.4±12.0 mmol/mol]) (P<0.001). Similarly, compared with patients receiving MDI, those receiving CSII showed significantly greater reductions in 24-h mean sensor glucose (SG) (treatment difference, -17.1 mg/dL; P=0.0023), less exposure to SG >180 mg/dL (-12.4%; P=0.0004) and SG >250 mg/dL (-5.5%; P=0.0153), and more time in the SG range of 70-180 mg/dL (12.3%; P=0.0002), with no differences in exposure to SG<70 mg/dL or in glucose variability. Changes in postprandial (4-h) glucose area under the curve >180 mg/dL were significantly greater with CSII than with MDI after breakfast (-775.9±1,441.2 mg/dL/min vs. -160.7±1,074.1 mg/dL/min; P=0.0015) and after dinner (-731.4±1,580.7 mg/dL/min vs. -71.1±1,083.5 mg/dL/min; P=0.0014). Conclusions: In patients with suboptimally controlled type 2 diabetes, CSII significantly improves selected glucometrics, compared with MDI, without increasing the risk of hypoglycemia

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: An overview

    No full text
    Infection by human immunodeficiency virus-1 (HIV-1) is associated with a progressive decrease in CD4 T-cell numbers and the consequent collapse of host immune defenses. The major pathogenic mechanism of AIDS is the massive apoptotic destruction of the immunocompetent cells, including uninfected cells. The latter process, also known as by-stander killing, operates by various mechanisms one of which involves the formation of syncytia which undergo cell death by following a complex pathway. We present here a detailed and curated map of the syncytial apoptosis signaling network, aimed at simplifying the whole mechanism that we have characterized at the molecular level in the last 15 years. The map was created using Systems Biology Graphical Notation language with the help of CellDesigner software and encompasses 36 components (proteins/genes) and 54 interactions. The simplification of this complex network paves the way for the development of novel therapeutic strategies to eradicate HIV-1 infection. Agents that induce the selective death of HIV-1-elicited syncytia might lead to the elimination of viral reservoirs and hence constitute an important complement to current antiretroviral therapies

    Electron levels in the afterburning region of a rocket plume.

    No full text

    53BP1 represses mitotic catastrophe in syncytia elicited by the HIV-1 envelope

    No full text
    p53 binding protein-1 (53BP1) participates in checkpoint signaling during the DNA damage response (DDR) and during mitosis. In this study we report that 53BP1 aggregates in nuclear foci within syncytia elicited by the human immunodeficiency virus (HIV)-1 envelope. 53BP1 aggregation occurs as a consequence of nuclear fusion (karyogamy (KG)). It colocalizes partially with the promyelomonocytic leukemia protein (PML), and the ataxia telangiectasia mutated kinase (ATM), the two components of the DDR that mediate apoptosis induced by the HIV-1 envelope. ATM-dependent phosphorylation of 53BP1 on serines 25 and 1778 (53BP1S25P and 53BP1S1778P) occurs at these DNA damage foci. 53BP1S25P was also detected in syncytia present in the lymph nodes or frontal brain sections from HIV-1-infected carriers, as well as in peripheral blood mononucleated cells from HIV-1-infected individuals, correlating with viral load. Knockdown of 53BP1 caused HIV-1 envelope-induced syncytia to enter abnormal mitoses, leading to their selective destruction through mitochondrion-dependent and caspase-dependent pathways. In conclusion, depletion of 53BP1 triggers the demise of HIV-1-elicited syncytia through mitotic catastrophe

    The tumor suppressor protein PML controls apoptosis induced by the HIV-1 envelope

    Get PDF
    Promyelomonocytic leukemia (PML) is a prominent oncosuppressor whose inactivation is involved in the pathogenesis of hematological and epithelial cancers. Here, we report that PML aggregated in nuclear bodies in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. PML aggregation occurred after the fusion of nuclei (karyogamy) within syncytia but before the apoptotic program was activated. The aggregation of PML was detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Using a range of specific inhibitors of PML (the oncogenic PML/RARα fusion product or specific small interfering RNAs), we demonstrated that, in Env-elicited syncytia, PML was required for activating phosphorylation of ataxia telangiectasia mutated (ATM), which colocalized with PML in nuclear bodies, in a molecular complex that also involved topoisomerase IIÎČ-binding protein 1. PML knockdown thus inhibited the ATM-dependent DNA damage response that culminates in the activation of p53, p53-dependent transcription of pro-apoptotic genes and cell death. Infection of CD4-expressing cells with HIV-1 also induced syncytial apoptosis, which could be suppressed by inhibiting PML. Altogether, these data indicate that PML activation is a critical early event that participates in the apoptotic demise of HIV-1-elicited syncytia
    corecore